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The main objective of this conference is to ensure participation of world-leading experts

in diverse areas of Ordinary and Partial Differential Equations theory and applications. We

also plan to attract a significant number of students and young researchers.

The academic program of the conference will consist of invited talks and oral commu-

nications. In the scheduled sessions, we will cover:

¦ Linear and nonlinear operators in function spaces.

¦ Differential, integral and operator equations.

¦ Initial and boundary value problems for ordinary and partial differential equations.

¦ Numerical methods for ordinary and partial differential equations.

¦ Mathematical and computer modeling.

¦ Mathematical physics and modeling in physics.

The organizers hope that RDOPDE will become a regular event and help create links be-

tween mathematicians. Due to the Covid 19 pandemic this edition will be held online.

Plenary Speakers

Pr. Irena Lasiecka, Department of Mathematical Sciences, University of Memphis, USA.

Pr. Mokhtar Kirane, University of La Rochelle, La Rochelle, France.

Pr. Tian Xiang, Institute For Mathematical Sciences (IMS) at Renmin University of China.

Pr. Hacène Belbachir, Université des Sciences et de la Technologie Houari Boumediene,

Algeria.

Pr. Nasser-eddine Tatar, King Fahd University of Petroleum and Minerals, Saudi Arabia.

Pr. Miyasita Tosiya, Yamato University, Japan.

Pr. Khaled Zennir, Department of Mathematics, College of Science and Arts, Al-Ras,

Qassim University, Saudi Arabia.

Pr. Mourad Sini, Radon Institute, Austrian Academy of Sciences, Austria.

Pr. Svetlin Georgiev, University of Sofia, Bulgaria.

Pr. Radu Precup, Babe?-Bolyai University, Cluj-Napoca, Romania.
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USA.
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4. Pr. Mokhtar KIRANE, Department of Mathematics, College of Art and Sciences,

Khalifa University of Science. and Technology, Abu Dhabi, United Arab Emirates.

5. Pr. Radu Precup, Babees-Bolyai University of Cluj-Napoca, Romania and Tiberiu
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RDOPDE 22
Recent Developments in Ordinary and Partial Differential

Equations

Une extension de l'inégalité de Gram aux espaces L2n

Hacène Balbachir

Université des Sciences et de la Technologie Houari Boumediene, Algeria

Résumé :
 Il est bien connu que l'inégalité de Gram est une généralisation de l'inégalité de Schwarz en

la considérant comme un déterminant. En introduisant le déterminant multidimensionnel sur
des hyper matrices (tenseurs) symétriques, nous nous proposons de donner un équivalent de
l'inégalité de Gram via une forme multilinéaire symétrique à 2n composantes. Ceci étant, cela
nous permettra, durant l'exposé, de présenter une extension de l'identité de Lagrange.

BOURAINE
Text Box
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RDOPDE 22
Recent Developments in Ordinary and Partial Differential

Equations

Topic: Partial Differential Equations.

Long time behavior in flow-structure interactions

Irena Lasiecka

Department of Mathematical Sciences, University of Memphis.
E-mail: lasiecka@memphis.edu

Abstract: Flow-structure interactions are ubiquitous in nature. Problems such as atten-
uation of turbulence or flutter in an oscillating structure [Tacoma bridge], flutter in tall
buildings, fluid flows in flexible pipes, in nuclear engineer- ing flows about fuel elements
and heat exchanger vanes -are prime examples of relevant applications. Mathematically,
the models are represented by a 3 D com- pressible, irrotational Euler Equation coupled
to a nonlinear dynamic elasticity on a 2 D manifold. Strong boundary-type coupling at
the interface between the two media is at the center of the analysis. This provides for a
rich mathematical structure, opening the door to several unresolved problems in the area
of non- linear PDE’s, dynamical systems and related harmonic analysis and diifferential
geometry. This talk aims at providing a brief overview of recent developments in the area
along with a presentation of some recent advances addressing the issues of control and long
time behavior [partial structural attractors] subject to mixed boundary conditions arising
in modeling of the interface between the two environments.
Keywords: Euler Equation, nonlinear elasticity, flutter, stabilitzation, compact attrac-
tors.
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Remarks on radial solutions of a parabolic
Gelfand-type equation

Tosiya MIYASITA

Abstract

We consider an equation with exponential nonlinearity. In this
talk, we concentrate on the radial solutions. First, we find a global
solution for sufficiently small initial value and parameter by Sobolev
embedding and Poincaré inequalities together with a decreasing en-
ergy. Next, we study the corresponding elliptic equation and treat its
spectral property.

1 Introduction

In [1, 2], we consider a parabolic equation
ut = ∆u+ λ (eu − 1) x ∈ Ω, t ∈ (0, Tu0),
u(x, t) = 0 x ∈ ∂Ω, t ∈ (0, Tu0),
u(x, 0) = u0(x) x ∈ Ω,

(1)

where λ > 0, Ω is a bounded domain in Rn with smooth boundary ∂Ω
for n ∈ N and Tu0 denotes the maximal existing time of the local solution
for an initial function u0. In [2], the author established a unique global
solution for sufficiently small λ > 0 and u0 ∈ H1

0 (Ω) with n = 1, 2. To
prove the results, first of all, we derive the energy inequality from Lya-
punov function. Next we apply Sobolev embedding theorem for n = 1 and
Trudinger-Moser inequality for n = 2. Thus it is not easy to extend the re-
sults in [2] for n ≥ 3. In this talk, we assume that the domain is an annulus
Aa ≡ {x ∈ Rn | a < |x| < a−1 for 0 < a < 1 and n ≥ 3} and concentrate on
the radial solutions u(r) = u(|x|) for r = |x|. Then problem (1) is reduced

Mathematics subject classification(2020): 35K58, 35J61, 35B45, 35B32, Keywords
and Phrases: Exponential nonlinearity, Lyapunov function, Global solution, Stationary
solution.

1
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to 
ut = urr + n−1

r
ur + λ (eu − 1) r ∈ (a, a−1), t ∈ (0, Tu0),

u(a, t) = u(a−1, t) = 0 t ∈ (0, Tu0),
u(r, 0) = u0(r) r ∈ (a, a−1).

(2)

Note that any interval α < s < β in R is transformed into a < r < a−1

through the relation r = (αβ)−1/2 s and a = α1/2β−1/2. Hence the problem
on any interval is equivalent to that on (a, a−1). Henceforward, we denote
I ≡ (a, a−1) and |I| = a−1 − a, respectively. We denote the H1

0 space with
respect to r by H = H1

0 (a, a−1).

Nowadays, it seems that there are not enough studies for (1). If Ω is a
unit ball, in [1] they study the bifurcation diagram of the stationary positive
solution and compute the bound for Morse index globally, not locally around
a bifurcation point. If the solution is positive and radially symmetric, they
establish the existence of singular solution, multiple existence of the regular
solution and bound for its Morse index. In [2], he deals on the bifurcation
diagram of the stationary solution, not always positive, for n = 1, proves that
nontrivial solutions bifurcate from trivial solution and computes the Morse
index locally around each bifurcation point. He finds blow-up criteria and
proves the existence of a global solution for sufficiently small initial value and
parameter. The aim of this talk is to make a few remarks for the solution
of (1) for higher dimensional case. Similarly to the one dimensional case,
by Lyapunov function and Sobolev embedding theorem, we can prove the
following theorem on the existence of a unique global solution for sufficiently
small λ > 0 and u0 ∈ H.

Theorem 1 Let n ≥ 3 and 0 < a < 1. If u0 ∈ H and λ are sufficiently
small, then there exists a unique global solution of (2) satisfying

u ∈ C
(
(0,+∞);H ∩H2(I)

)
∩ C

(
[0,+∞);H

)
∩ C1

(
(0,+∞);L2(I)

)
.

Next, we consider the stationary problem corresponding to (1), that is,{
∆v + λ (ev − 1) = 0 x ∈ Ω,
v(x) = 0 x ∈ ∂Ω.

Similarly, we treat the radial problem{
vrr + n−1

r
vr + λ (ev − 1) = 0 r ∈ I,

v(a) = v(a−1) = 0.
(3)

2
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We define the solution set C by

C ≡
{

(λ, v) ∈ R+ ×
(
C2(I) ∩ C0(I

) ∣∣ v = v(r) solves (3) for λ > 0
}
,

where R+ = {k | k > 0} and

C0(I) ≡
{
v ∈ C(I)

∣∣ v(a) = v(a−1) = 0
}

endowed with the L∞ norm. Similarly to [2], we have the following bifurca-
tion result:

Theorem 2 Let n ≥ 3 and 0 < a < 1. There exists a sequence κi with

0 < κ1 < κ2 < · · · < κi < · · · <↑ +∞

such that two continua S±i ⊂ C of nontrivial solution of (3) bifurcate at
(λ, v) = (κi, 0).

References

[1] W. Chen and J. Dávila, Resonance phenomenon for a Gelfand-type prob-
lem. Nonlinear Anal. 89, 299-321 (2013)

[2] T. Miyasita, Dynamical system on a parabolic and elliptic Gelfand-type
equation. Sci. Math. Jpn., e-2021 34, 2021-5.

Tosiya Miyasita
Division of Mathematical Science, Department of Science and Engineering,
Faculty of Science and Engineering, Yamato University, 2-5-1,
Katayama-cho, Suita-shi, Osaka, 564-0082, Japan
e-mail: miyasita.t@yamato-u.ac.jp
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RDOPDE 22
Recent Developments in Ordinary and Partial Differential

Equations

Topic: Fractional Calculus

A SURVEY OF USEFUL INEQUALITIES IN FRACTIONAL
CALCULUS

Mokhtar KIRANE

Department of Mathematics, College of Art and Sciences, Khalifa University of Science
and Technology, Abu Dhabi, United Arab Emirates,

E-mail: mokhtar.kirane@yahoo.com

Abstract: A survey on inequalities in fractional calculus that have proven to be very
useful in analyzing differential equations is presented. We mention in particular, a Leibniz
inequality for fractional derivatives of Riesz, Riemann-Liouville or Caputo type and its
generalization to the d-dimensional case that become a key tool in differential equations;
they have been used to obtain upper bounds on solutions leading to global solvability, to
obtain Lyapunov stability results, and to obtain blowing-up solutions via diverging in a
finite time lower bounds. We will also mention the weakly singular Gronwall inequality of
Henry and its variants, principally by Medved, that plays an important role in differential
equations of any kind. We will also recall some traditional inequalities involving fractional
derivatives or fractional powers of the Laplacian.
Keywords: fractional calculus, inequalities

References:

1. A. Alsaedi, B. Ahmad, M. Kirane , A survey of useful inequalities in fractional
calculus, Fractional Calculus and Applied Anal.ysis no.3 vol. 20, (2017), 574–594.

2. A. Cordoba and D. Cordoba, A maximum principle applied to quasi- geostrophic
equations, Commun. Math. Phys. 249, (2004), 511–528.

3. S. Eilertsen, On weighted positivity and the Wiener regularity of a boundary point
for the fractional Laplacian. Ark. Mat. vol. 38, (2000), 53–75.
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RDOPDE 22
Recent Developments in Ordinary and Partial Differential

Equations

Topic: Ordinary Differential Equations, Nonlinear Operator Theory

Nonlinear alternatives of hybrid type for nonself vector-valued
maps and application to differential systems

Radu Precup

Babeş-Bolyai University of Cluj-Napoca, Romania
and

Tiberiu Popoviciu Institute of Romanian Academy
E-mail: r.precup@math.ubbcluj.ro

Abstract: The lecture is devoted to nonlinear alternatives of Leray-Schauder and
Mönch type for nonself vector-valued operators, under hybrid conditions of Perov contrac-
tion and compactness. Thus we present vector versions of the theorems of Krasnosel’skii,
Avramescu, O’Regan, Burton-Kirk and Gao-Li-Zhang. An application is given to a bound-
ary value problem for a system of second order implicit differential equations.

Keywords: nonlinear operator; nonself map; fixed point; Perov contraction; nonlinear
boundary value problem.

1 Introduction

Any study in operator equations with hybrid conditions must begin with Krasnosel’skii’s
theorem for the sum of two operators.

Theorem 1 (Krasnosel’skii). [7] Let D be a closed bounded convex subset of a Banach
space X, A : D → X a contraction and B : D → X a continuous mapping with B (D)
relatively compact. If

A (x) +B (y) ∈ D for every x, y ∈ D, (1)

then the map N := A+B has at least one fixed point.

The hybrid character of Krasnosel’skii’s theorem lies in the decomposition of the oper-
ator N as a sum of two maps A and B with different properties. An other possibility for
a hybrid approach arises in case of systems, when the domain of N splits as a Cartesian
product, say X×Y, and correspondingly the operator N splits as a couple (N1, N2) , where
N1, N2 take their values in X and Y, respectively. A typical result in this direction is the
following vector version of Krasnosel’skii’s theorem, due to Avramescu.

1

BOURAINE
Text Box
11



Theorem 2 (Avramescu). [1] Let (D1, d) be a complete metric space, D2 a closed convex
subset of a normed space Y and let Ni : D1 ×D2 → Di, i = 1, 2 be continuous mappings.
Assume that the following conditions are satisfied:

(a) There is a constant l ∈ [0, 1) such that

d (N1 (x, y) , N1 (x, y)) ≤ ld (x, x)

for all x, x ∈ D1 and y ∈ D2;

(b) N2 (D1 ×D2) is a relatively compact subset of Y.

Then there exists (x, y) ∈ D1 ×D2 with N1 (x, y) = x, N2 (x, y) = y.

Extensions of Krasnosel’skii’s theorem to nonself maps have been given by O’Regan [8]
(1996), Burton-Kirk [3] (1998) and Gao-Li-Zhang [5] (2011).

The presentation is mainly based on paper [6]. Related results can be found in [2] and
[4].

2 Abstract results for nonself maps

First we obtain an Avramescu type principle for nonself maps. Consider a system of two
operator equations {

N1 (x, y) = x
N2 (x, y) = y.

(2)

Theorem 3. Let Y be a Banach space, K ⊂ Y a retract of Y and U ⊂ K open in K.
Let Λ be a topological space and

N1 : Λ× U → Λ, N2 : Λ× U → K

be two mappings such that the following conditions are satisfied:
(a) For each y ∈ U, there is a unique x =: S (y) ∈ Λ with

N1 (S (y) , y) = S (y) ;

(b) There is a compact map H : U × [0, 1]→ K, Hλ := H (·, λ) , with

i (H0, U, K) 6= 0 and H1 = N2 (S (.) , .) .

Then either
(i) the system (2) has a solution (x, y) ∈ Λ× U , or
(ii) there is a point y ∈ ∂KU and λ ∈ (0, 1) with y = H (y, λ) .

Theorem 3 gives in particular hybrid results for nonself maps of Krasnosel’kii, O’Regan,
Burton-Kirk and Gao-Li-Zhang types. Instead the common contraction property, we con-
sider its vector analogue, the Perov contraction.

2
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3 Application

An application of the vector version of Burton-Kirk theorem, is given to the following
boundary value problem for a system of n equations

−u′′i = fi (t, Viu) + gi (t, V0u) , a.e. t ∈ (0, 1) (3)

ui (0) = ui (1) = 0, i = 1, 2, · · ·, n,

where V0u and Viu denote the vectors

V0u = (u, u′) = (u1, · · ·, un, u′1, · · ·, u′n) , Viu = (V0u, u
′′
i ) = (u, u′, u′′i ) .

Note that the equations are implicit due to the dependence on u′′i of the terms fi (t, Viu).

References:

1. C.Avramescu, On a fixed point theorem (in Romanian), St. Cerc. Mat. no.2
vol.22, (1970), 215–221.

2. I.Benedetti, T.Cardinali and R.Precup, Fixed point–critical point hybrid the-
orems and application to systems with partial variational structure, J. Fixed Point
Theory Appl. vol.23, (2021), 63, 1–19.

3. T.A. Burton and C.Kirk, A fixed point theorem of Krasnoselskii-Schaefer type,
Math. Nachr. vol.189, (1998), 23–31.

4. T.Cardinali, R.Precup and P.Rubbioni, Heterogeneous vectorial fixed point
theorems, Mediterr. J. Math. vol.14, (2017), 83.

5. H.Gao, Y.Li and B.Zhang, A fixed point theorem of Krasnoselskii-Schaefer type
and its applications in control and periodicity of integral equations, Fixed Point
Theory vol.12, (2011), 91–112.

6. V.Ilea, A.Novac, D.Otrocol and R.Precup, Nonlinear alternatives of hybrid
type for nonself vector-valued maps and application, submitted.
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RDOPDE 22
Recent Developments in Ordinary and Partial Differential

Equations

Topic: Partial differential Equations and Applications

Mathematics Of The Imaging Modalities Using
Contrast Agents

Mourad Sini
Radon Institute, Altenbergerstrasse 69, A-4040, Linz, Austria

E-mail: mourad.sini@oeaw.ac.at

Abstract: It is, nowadays, a common certainty that the inverse problems of recovering
objects from remote measurements are, mostly, highly unstable, especially for low contrast-
ing tissues (as tumors in early stages) or fluids. To recover the stability, it is advised in
the engineering literature to create, whenever possible, the missing contrasts in the targets
to image by injecting contrast-agents. In this talk, we follow this direction and propose an
approach how to analyze mathematically the effect of the injected agents on the different
fields under consideration. These contrast agents are small-sized particles modeled with
materials that enjoy high contrasts as compared to the ones of the background. These two
properties allow them, under critical scales of size/contrast, to create local spots when ex-
cited from far. These local spots can be remotely recovered in stable ways. The accessible
information on the target to image are encoded in theses spots.

We consider two modalities, namely the acoustic imaging and photo-acoustic imaging,
where the contrast agents are micro-bubbles and nano-particles respectively. In these cases,
we provide a clear and useful correspondence between the critical size/contrast scales and
the main resonances, and hence the local spots, they are able to create while excited with
appropriate incident frequencies.

1. Acoustic imaging using bubbles. From the remotely measured back-scattered fields,
we recover the (Minnaert) resonance and the total field on the location of the bubble.
From the Minnaert resonance, we reconstruct the mass density and from the total
field we reconstruct the bulk modulus of the target to image.

2. Photo-acoustic using nano-particles. Here we have two, connected, waves: the time
domain acoustic wave and electromagnetic wave. From the measured acoustic wave,
we first recover the internal travel-time function and then the electric field (on the
nano-particle). From the travel time, we reconstruct the acoustic speed of propaga-
tion, via the Eikonal equation, and from the electric field, we recover the plasmonic
resonant frequencies from which we reconstruct the permittivity.

2
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Keywords: Photo-acoustics, Electromagnetism, micro-bubbles, nano-particles, plas-
monic resonances, dielectric resonances.

References:
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RDOPDE 22
Recent Developments in Ordinary and Partial Differential

Equations

Topic: Ordinary Differential Equations

Boundary Value Problems for First Order Impulsive Dynamic
Equations

Svetlin G. Georgiev

Sofia University, Faculty of Mathematics and Informatics, Department of Differential
Equations, Bulgaria

E-mail: svetlingeorgiev1@gmail.com

Abstract: This lecture is devoted to a qualitative analysis of some classes of boundary
value problems for first order impulsive dynamic equations. Lower and upper solutions for
first order impulsive dynamic equations are studied. They are investigated for existence
and nonuniqueness of solutions of first order impulsive dynamic equations with general
boundary conditions and periodic boundary conditions. Criteria for existence of extremal
solutions are given.
Keywords: first order impulsive dynamic equations, existence of solutions, uniqueness of
the solutions, boundary value problems, periodic boundary value problems.

References:

1. S. Georgiev and K. Zennir, Boundary Value Problems on Time Scales, Volume
I, CRC Press, 2021.

2. S. Georgiev and K. Zennir, Boundary Value Problems on Time Scales, Volume
II, CRC Press, 2021.
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Equations

Topic: Fractional Differential Equations

From integer-order PDEs to fractional-order PDEs
Nasser-eddine Tatar

King Fahd University of Petroleum and Minerals,
Department of Mathematics,
Dhahran 31261, Saudi Arabia

E-mail: tatarn@kfupm.edu.sa

Abstract: In this talk, we will justify and explain the passage from integer-
order PDEs to fractional-order PDEs. The subordination principle which allows
to inherit the well-posedness of the fractional problem from the corresponding
integer one will be presented. Moreover, we will stability issue as well as some
open problems.

Keywords: Fractional derivative; well-posedness; stability
Introduction:

In many complex diusion phenomena, the mean square displacement does
not grow linearly as in the ordinary cases. It grows nonlinearly in time as a
power function in case of disordered systems. This suggests using fractional
dierential models to describe the evolution of such processes. This represents
an appropriate alternative to the costly nonlinear models. In this talk, we will go
over some problems in viscoelasticity, thermoelasticity and porous media. The
well-posedness as well as the stability of such systems with the involved integer-
order derivatives replaced by fractional ones will be discussed. In particular, we
will explain how we can pass smoothly from the integer case to the non-integer
case. The main difficulties and some open problems will be highlighted.
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Recent Developments in Ordinary and Partial Differential

Equations

On Krasnosels’kii type fixed point theorems

Tian Xiang, txiang@ruc.edu.cn

Renmin University of China

Abstract: A nice combination of the well-known Banach fixed point

theorem for self-contraction map and the Schauder fixed point theorem

for compact and continuous map yields the classical Krasnosel’skii fixed

point theorem.  In this talk, we survey various developments of the

Krasnosel’skii type fixed point theorem and indicate their applications in

integral,  differential and difference equations etc.

Mots-Clés: Krasnosel’skii type fixed point theorems,  contraction,

expansion, measure of noncom-pactness, measure of weak

noncompactness.
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STABILIZATION FOR SOLUTIONS OF PLATE EQUATION

WITH TIME-VARYING DELAY AND WEAK-VISCOELASTICITY

IN Rn

KHALED ZENNIR

Abstract. This talk considers a dynamical system with delay described by a
differential equation with partial derivatives of hyperbolic type and delay with

respect to a time variable. We established the k(t)-stability of weak solution

under suitable initial conditions in Rn, n > 4 by introducing an appropriate
Lyapunov functions.
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A class of differential problems in Banach spaces

Fatiha Selamnia (1), Dalila Azzam-Laouir (2)
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(2) Université de Jijel, Algérie
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Abstract: In this talk we prove, in separable Banach space E, the existence of solutions

for the sweeping process of the form

− ˙u(t) ∈ NC(t,u(t))(u(t)) + F (t, u(t)), , a.e. , t ∈ [0, T ],

where F : [0, T ] × E → E is an upper semi-continuous set-valued mapping with

nonempty closed convex values.

C : [0, T ] × E → E is a set-valued mapping with nonempty, ball compact and r-prox-

regular and NC(t,x)(.) is the proximal normal cone of C(t,x).

The existence of solutions for sweeping processes has been stud- ied by many authors

since the pioneering work by J.J. Moreau in the 70’s (see [2]). He expressed that sweeping

process by the following evolution differential inclusion

−u̇(t) ∈ NC(t)(u(t)), a.e. t ∈ [0, T ]; u(0) = u0 ∈ C(0),

where C(t) is a closed convex set in a Hilbert space H and NC(t)(.) is the normal cone to

C(t) in the sense of convex analysis, see also [3]. Then, some contributions in the context

of nonconvex sets C(t) were given in a series of papers, see for instance [1], [4].

Let I = [0, T ] (T >) and E be a separable, reflexive, uniformly smooth Banach space

which is I−smoothly weakly compact for an exponent p ∈ [2,∞]. Let F : I ×E → E be a

set-valued mapping with nonempty convex weakly compact values such that

(H1
F ) F is scalarly L(I) ⊗ B(E)-measurable, that is for each e ∈ E, the scalar function

δ∗(e, F (., .)) is L(I)⊗ B(E)-measurable;
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(H2
F ) for each t ∈ I, F (t, .) is scalarly upper semicontinuous, that is for each e ∈ E, the

scalar function δ∗(e, F (t, .)) is upper semicontinuous on E;

(H3
F ) il existe une real constant m positive tel que

|PF (t,x)(0)| = d(0, F (t, x)) ≤ m, ;∀(t, x) ∈ I × E.

Let r > 0 and C : I × E → E be a set-valued mapping taking nonempty closed and

r−prox-regular values. We assume that the following assumptions are satisfied.

(H1
C) There are real constants k1 > 0, 0 ≤ k2 < 1 such that for all s, t ∈ I and u, v, x ∈ E

|d(x,C(t, u))− d(x,C(s, v))| ≤ k1|t− s|+ k2‖u− v‖;

(H2
C) For any bounded A ⊂ E, the set C(I × A) is relatively ball compact, i.e., the

intersection of C(I × A) with any closed ball is relatively compact.

Then for any u0 ∈ (0, u0), the differential inclusion

(PF )





u(0) = u0;

u(t) ∈ C(t, u(t)), ∀t ∈ I;

−u̇(t)) ∈ NC(t,u(t))(u(t)) + F (t, u(t)), a.e. t ∈ [0, T ];

has a Lipschitz solution u : I −→ E.

Keywords: Ball-compactness, differential inclusions, r-prox-regularity, set-valued map-

ping, sweeping process, upper semi-continuity.
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Sém. Anal. Convexe Montp., (1988), Exp. no.8.

23



RDOPDE 22: Ordinary Differential Equations and Continuous Dynamical Systems

Approximate–null controllability for semilinear differential

inclusion in abstract Banach spaces

BENNICHE Omar (1)
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Abstract: We provide sufficient conditions for approximate null–controllability for non–

parametric semilinear differential inclusions of the form y′ ∈ Ay + F (t, y(t)) where A :

D(A) ⊂ X → X is a linear operator generating a C0–semigroup and F : [a, b]×X

Ã X is a given set–valued map where −∞ < a < b ≤ +∞.

Given a real Banach space (X, ‖ · ‖), consider the following non–parametric control

system:

y′(t) ∈ Ay + F (t, y), (1)

where A : D(A) ⊂ X → X is the infinitesimal generator of a C0–semigroup {S(t) : X →
X; t ≥ 0} and F : [a, b]×X Ã X is a given set–valued map where −∞ < a < b ≤ +∞.

By a solution of (1) on [t0, T ) ⊂ [a, b) we mean a continuous function y : [t0, T ] → X

for which there exists a pseudoderivative fy ∈ L1(t0, T ; X) satisfying fy(t) ∈ F (t, y(t)) a.e.

on [t0, T ] and such that

∀t ∈ [t0, T ), y(t) = S(t− t0)y(t0) +

∫ t

t0

S(t− s)fy(s)ds.

Here, we investigate approximate null–controllability of the couple: The Banach space X

and the system (1). Roughly speaking, we say that x ∈ X is approximate null–controllable

on [s0, T ] ⊂ [a, b) with respect to (1) if for every ε > 0, there exists a solution yε : [s0, T ] →
X of (1) with yε(s0) = x and ‖yε(T )‖ ≤ ε.

Our approach is based on the global near weak invariance of a set S with respect to a

dynamical system. We recall that near weak invariance means the existence of solutions

which remain arbitrarily close to a given set starting from initial states in that set whereas

(exact) weak invariance means the existence of solutions which remain in a given set starting

from that set.
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Near weak invariance has been characterized in terms of tangency conditions. Unlike

the (exact) weak invariance, convexity or compactness of the values of F is not needed.

Furthermore, the compactness of the semigroup may be dropped.

Our main result consists to prove that approximate null–controllability of (1) can be

obtained from global near viability of the epigraph of the norm of X with respect to a

related dynamical system. Then, we show that the non–parametric control system (1)

is approximately–controllable under a new weak Petrov condition which assumes a semi

scalar product to be bounded away from zero by a term that is not required to be constant

as in previous works.

As application, we give an approximate null– controllability result for a class of abstract

diffusion-reacted system.

Keywords: Approximate null–controllability, Weak invariance, Differential inclusion.
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Abstract: In this talk, we investigate the weighted p(t)-Laplacian system

− (
w(t)|x′(t)|p(t)−2x′(t)

)′
+ f

(
t, x(t), (w(t))

1
p(t)−1 x′(t)

)
= 0, t ∈ (0, T ), t 6= tj, (2)

where x : [0, T ] → RN , N ≥ 1, with the following impulsive boundary conditions

x(t+j )− x(tj) = Aj

(
tj, x(tj), (w(tj))

1
p(tj)−1 x′(tj)

)
, j ∈ {1, . . . , k}, (3)

w(t+j )|x′(t+j )|p(t+j )−2x′(t+j ) = w(tj)|x′(tj)|p(tj)−2x′(tj)

+Bj

(
tj, x(tj), (w(tj))

1
p(tj)−1 x′(tj)

)
, j ∈ {1, . . . , k},

(4)

ax(0)− b(w(0))
1

p(0)−1 x′(0) = 0, (5)

cx(T ) + dw(T )|x′(T )|p(T )−2x′(T ) = 0, (6)

where

(H1) f ∈ C([0, T ]× RN × RN),

|f(t, x, y)| ≤ a1(t) + a2(t)|x|p1 + a3(t)|y|p2 , t ∈ [0, T ], x, y ∈ RN ,

a1, a2, a3 ∈ C([0, T ]), 0 ≤ a1, a2, a3 ≤ B on [0, T ] for some constant B > 1, p1, p2 ≥ 0.
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(H2) p ∈ C([0, T ]), w ∈ C1([0, T ]), p > 1, w > 0 on [0, T ],

w(t) ≤ B, p(t) ≤ B, (w(t))
1

p(t)−1 ≤ B, t ∈ [0, T ],

a, b, c, d ∈ R, 0 = t0 < t1 < . . . , tk < tk+1 = T , k ∈ N.

(H3) Aj ∈ C([0, T ]× RN × RN),

|Aj(t, x, y)| ≤ a1j(t) + a2j(t)|x|p1j + a3j(t)|y|p2j , j ∈ {1, . . . , k},

0 ≤ a1j, a2j, a3j ≤ B on [0, T ], p1j, p2j ≥ 0, j ∈ {1, . . . , k}.

(H4) Bj ∈ C([0, T ]× RN × RN),

|Bj(t, x, y)| ≤ b1j(t) + b2j(t)|x|q1j + b3j(t)|y|q2j , j ∈ {1, . . . , k},

0 ≤ b1j, b2j, b3j ≤ B on [0, T ], q1j ≥ 0, q2j ≥ 0, j ∈ {1, . . . , k}.

Define

PC2([0, T ]) =
{
g : [0, T ] → RN , g ∈ C2([0, T ]\{tj}k

j=1) ,

g(i)(t−j ), g(i)(t+j ) exist and g(i)(t−j ) = g(i)(tj), j ∈ {1, . . . , k}, i ∈ {0, 1, 2}} .

Below suppose that A > 0 and C > 0 are constants so that: (H5) C(1 + T + T 2) ≤ A.

For ε ∈ (0, 1), we suppose that the constants B and A which appear in the conditions

(H1) and (H5), respectively, satisfy the following inequality: (H6) εB1(1 + A) < B and

AB1 < B.

Our main result claims that if (H1)-(H6) hold, then the problem (1)-(3) has at least

one solution in PC2([0, T ]). To prove this result we propose a new approach based upon

recent theoretical results on the fixed point theorem for the sum of two operators.
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equations via a new fixed point theorem

Lydia Bouchal (1), Karima Mebarki (2), Svetlin Georgiev Georgiev (3)

(1) Laboratory of Applied Mathematics, Faculty of Exact Sciences,

University of Bejaia, 06000 Bejaia, Algeria.

E-mail: lydia.bouchal@univ-bejaia.dz

(2) Laboratory of Applied Mathematics, Faculty of Exact Sciences,

University of Bejaia, 06000 Bejaia, Algeria.

E-mail: karima.mebarki@univ-bejaia.dz

(3) Department of Differential Equations, Faculty of Mathematics and Informatics,

University of Sofia, Sofia, Bulgaria.

E-mail: svetlingeorgiev1@gmail.com

Abstract: In this talk we establish a new result on the existence of at least one positive

solution to the following non-autonomous second order difference equation:

42u(k) + f(k, u(k)) = 0, k ∈ {0, 1, . . . , N}, N ∈ N, N > 1, (7)

with boundary conditions

u(0) = u(N + 2) = 0, (8)

where 42 is the second forward difference operator which acts on u by 42u(k) = u(k +

2) − 2u(k + 1) + u(k), k ∈ {0, 1, . . . , N} and f : {0, ..., N + 2} × [0,∞) → [0,∞) is a

continuous function satisfying:

(H1):





0 ≤ f(k, u(k)) ≤ a(k) + b(k)|u(k)|p, p ≥ 0, a, b : {0, . . . , N + 2} → [0,∞) be such that

0 ≤ a(k), b(k) ≤ B, k ∈ {0, . . . , N + 2}, for some positive constant B.

By positive solution, we mean a function u : {0, . . . , N + 2} → R such that u(k) ≥ 0 on

{0, 1, . . . , N + 2} and satisfies the posed BVP.

Suppose

28



RDOPDE 22: Ordinary Differential Equations and Continuous Dynamical Systems

(H2): ε, A1, B, B1, R, R1, r are positive constants such that

ε ∈ (0, 1),
B1

2
> A1(N + 3) ((N + 2)(N + 1)B (1 + Rp) + R) ,

r

A1

< R, R1 > max{R, 1}, A1 ∈ (0, 1),

A1(ε + r + 2B1) ≤ r.

The main result is as follows.

Theorem: Suppose that (H1) and (H2) hold. Then the BVP (1)-(3) has at least one

positive solution u∗ ∈ E such that A1 max
k∈{0,...,N+2}

u∗(k) ≥ r and max
k∈{0,...,N+2}

u∗(k) ≤ R.

The approach used is the fixed point theory in cones of a Banach space. Precisely, we

develop a new fixed point theorem of functional type for the sum of two operators T + S

where I − T is Lipschitz invertible and S a k-set contraction. The arguments are based

upon of recent results on the fixed point index developed in [4] and [5].

Keywords: Fixed point; sum of operators; non-autonomous difference equations; pos-

itive solution.
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Abstract: This talk is devoted mainly to prove the existence of absolutely continuous

solutions to time differential inclusion under almost-convex condition, which is a strictly

weaker condition than the usual assumption of convexity on the values of the right-hand

side.

Given J = [0, T ] ⊂ R and Ω ⊂ Rn be closed. For a subset K ⊂ Rn , co(K) denote the

convex hull of K.

Let X be a vector space. A set K ⊂ X is calles almost convex if for every ξ ∈ co(k) there

exist λ1 and λ2, 0 ≤ λ1 ≤ 1 ≤ λ2, such that λ1ξ ∈ K, λ2ξ ∈ K.

The existence of solutions for the first order differential inclusions of the form

(PF )

{
−u̇(t) ∈ Au(t) + F (t, u(t)) a.e.t ∈ J,

u(0) = u0

which is the subject of our interest, vary a lot according to the hypotheses imposed on

the multi-application F . The convexity hypothesis is widely used, in the calculus of vari-

ations in optimal control, and in differential inclusions to prove the existence of solutions,

particularly to establish the closure of the set of solutions, which is generally unclosed

without convexity. The problem (PF ) has been studied by Dalila Azzam-Laouir and all

[2] in the case where F is an upper semicontinuous multifunction with convex values. The

non-convex case has been studied by various approaches. Note that in [4], a generalization

of convexity has been defined, namely, the almost convexity of sets. This almost convexity

condition has been used successfully by many authors, see for example [1]. Our aim in

this talk, is to provide in finite dimensional space the existence of absolutely continuous

solutions for the problem (PF ) where F : Ω×Rn ⇒ Rn (Ω ⊂ Rn) is a multifunction, upper

31



RDOPDE 22: Ordinary Differential Equations and Continuous Dynamical Systems

semicontinuous with almost convex closed values.

Theorem 1.

Let F : J × Ω ⇒ Rn be an almost convex closed valued multifunction, satisfying the

following assumptions:

1. For For each t, F (t, .) is scalarly (L(J)⊗B(Rn))-measurable, i.e., for each t ∈ J and

each e ∈ Rn, the scalar function δ∗(e, F (t, .)) is (L(J)⊗ B(Rn))-measurable;

2. for each t, F (t, .) is scalarly upper semicontinuous on Rn, i.e., for each t ∈ J and

each e ∈ Rn, the scalar function δ∗(e, F (t, .)) is upper semicontinuous on Rn;

3. ProjF (t,x)(0) ⊂ (1 + ‖x‖)C, ∀(t, x) ∈ J × Rn where C ⊂ Rn be closed.

Let u0 ∈ Ω and let u : J → Ω be an absolutely continuous solution of the problem (Pco).

Assume that there are two integrable functions λ1(.) and λ2(.) defined on J , satisfying

0 ≤ λ1(t) ≤ 1 ≤ λ2(t), ∀t ∈ J and such that, for almost every t ∈ J , we have

−λ1(t)u̇(t) ∈ Au(t) + F (t, u(t)) and − λ2(t)u̇(t) ∈ Au(t) + F (t, u(t)).

Then there exists a nondecreasing absolutely continuous map t = t(s) of the interval J

into itself, such that the map ũ(s) = u(t(s)) is a solution of the problem (PF ).

Theorem 2.

Let F : J ×Ω ⇒ Rn be an almost convex closed valued multifunction, satisfying 1., 2. and

3. in Theorem 1. Then,

1. the problem (PF ) admit at least an absolutely continuous solution in J .

2. for every τ ∈ J , the attainable set at τ, Au0(τ) of the problem (PF ) coincide avec

Aco
u0

(τ), the attainable set at τ of the convexified problem (Pco).

Keywords: Differential inclusion, almost convex set, time optimal problem.
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Fixed point and global asymptotic stability of nonlinear neutral

differential equation
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Abstract: This talk addresses the stability study for nonlinear neutral differential

equations. Thanks to a new technique based on the fixed point theory, we find some new

sufficient conditions ensuring the global asymptotic stability of the solution. In particular,

the results improve some previous ones in the literature.

In the current talk, we aim at discussing the asymptotic stability in C1 for a standard form

of neutral differential equations as follows,

u′(t) = −
N∑

i=1

ai (t, ut) u(t) + g (t, u′t) + f (t, ut) , t ≥ t0, (1.1)

where f, g ∈ C (R+ ×B,R) and ai ∈ C (R+ ×B,R) ,
(
i = 1, N

)
, with

B =
{
φ ∈ C

(
R−,R

)
: φ bounded

}

with the norm ‖φ‖◦ := sup
θ∈(−∞,0]

|φ (θ)| . Let u ∈ C1 (R,R) be bounded and t ≥ 0 a fixed

number, we let ut, u
′
t ∈ C be defined by ut (θ) = u (t + θ) and u′t (θ) = u′ (t + θ) for θ ∈ R−.

Before proceeding, we firstly introduce some assumptions:

(A1) there exists a constant L > 0 and a function b1 ∈ C (R,R+) such that, for all

φ, ψ ∈ CL and for all t ≥ 0, |f (t, φ)− f (t, ψ)| ≤ |b1 (t)| ‖φ− ψ‖◦ .

(A2) there exists a constant L′ > 0 and a function b2 ∈ C (R,R+) such that, for all

φ, ψ ∈ C1
L′ and for all t ≥ 0, |g (t, φ′)− g (t, ψ′)| ≤ |b2 (t)| ‖φ′ − ψ′‖◦ .

(A3) ∀ε > 0 and t1 ≥ 0, ∃ t2 > t1 such that [t ≥ t2, ut ∈ CL] , imply |f (t, ut)| ≤
|b1 (t)|

(
ε + ‖u‖[t1,t]

)
.

(A4) ∀ε > 0 and t1 ≥ 0, ∃ t3 > t1 such that [t ≥ t3, u
′ ∈ C1

L′ ] , imply |g (t, u′t)| ≤
|b2 (t)|

(
ε + ‖u′‖[t1,t]

)
.
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(A5) ∃ α1, α2 ∈ C (R,R) ,( α2 is bounded) such that α1 (t) ≤ ∑N
i=1 ai (t, ut) ≤ α2 (t) .

(A6) we always assume that f (t, 0) = g (t, 0) = 0 for all t ≥ t0.

We aim to discuss the asymptotic stability in C1 for equation (1.1). More precisely, the

following result is established:

Theorem. Assume hypotheses (A1)–(A6) hold, and for any t ≥ t0, there exists η ∈ (0,
1

2
)

such that , lim inft→∞
∫ t

t0
α1 (s) ds > −∞, and

∫ t

0
α1(s)ds →∞ as t →∞, and

∫ t

t0

e−
∫ t

s α1(z)dz (|b1(s)|+ |b2(s)|) ds ≤ η,

|α2 (t)|
∫ t

t0

e−
∫ t

s α1(z)dz (|b1(s)|+ |b2(s)|) ds + (|b1(t)|+ |b2(t)|) ≤ η.

Then, the trivial solution to equation (1.1) is asymptotically stable in C1.

Keywords: Fixed point; asymptotic stability; neutral differential equations; variable

delays.
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Fixed point and stability of nonlinear problem of delay

differential equations

Hocine Gabsi

University of El-Oued, algeria

E-mail: hocinegabsi@gmail.com

Abstract: In this talk we offer existence criteria and sufficient conditions, so that

the trivial solution of the system with several delays of feedback control is asymptotically

stable. Here the fixed-point technique is a practical method for this purpose. When these

results are applied to some special delay mathematical models, some new results are ob-

tained, and many known results are improved.
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References:

1. A.Ardjouni, A.Djoudi, Stability in nonlinear neutral integro-differential equations

with variable delay using fixed point theory, J. Appl. Math. Comput. vol 44, (2014),

317-336

2. D.R.David, Ordinary and Delay Differential Equations, Mathematical Sciences Vol

20, Springer-Verlag New York Inc,(1977).

3. H.Gabsi, A.Ardjouni, A.Djoudi, Fixed Point and Stability of a class of several

delays differential nonlinear system with feedback control, Mathematica, vol 64 (87),

No 1,(2022) 63–74.

4. H.Gabsi, A.Ardjouni, A.Djoudi, New Stability Conditions for the Delayed Liénard

Nonlinear Equation via Fixed Point Technique Azerbaijan Journal of Mathematics

Vol.8, No1, (2018), 15-34.

5. H.Gabsi, A.Ardjouni, A.Djoudi, Existence of positive periodic solutions of non-

linear neutral differential systems with variable delays Ann Univ Ferrara Springer

Vol.64, No1, (2018), 83-97.

36



RDOPDE 22: Ordinary Differential Equations and Continuous Dynamical Systems

6. H.Gabsi, A.Ardjouni, A.Djoudi, Fixed points and stability of a class of non-

linear delay integro-differential equations with variable delays facta universitatis nis

ser.math.inform. vol.32, No.1 (2017), 31-57.

7. H. Smith, An Introduction to Delay Differential Equations with Applications to the

Life Sciences Springer New York 2011.

8. J.K.Hale, Theory of functional differential equations, Springer-Verlag, New York,

NY, USA, (1977).

9. J.K.Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equa-

tions, Springer, New York, (1993).

10. J.M.Smith, Models in Ecology, Cambridge University Press (1974).

11. K.Gopalsamy, Stability and Oscillations in Delay Differential Equations of Popu-

lation Dynamics, Springer Science+Business Media Dordrecht, Vol 74, (1992).

12. L.C.Becker, T.A.Burton, Stability, fixed points and inverse of delays, Proc. Roy.

Soc. Edinburgh 136A, (2006), 245-275.

13. Y.Kuang, delay differential equations population dynamics with applications, Aca-

demic Press, Inc (1993).

37



RDOPDE 22: Ordinary Differential Equations and Continuous Dynamical Systems
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metric spaces and application to ordinary differential equations
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Abstract: In this talk, we prove a fixed point theorem for rational contraction mappings

in complete partially ordered metric spaces. Example is provided to illustrate the validity

of our result. Afterwards, we prove existence and uniqueness of the solution of the following

periodic boundary value problem

{
u′(t) = f(t, u(t)) if t ∈ I = [0, T ] ,

u(0) = u(T ),
(1)

.

where T > 0 and f : I × R→ R is a continuous function.

A lower solution for (1) is a function α ∈ C1(I,R) such that

{
α′(t) = f(t, α(t))fort ∈ I

α(0) < α(T ).

Fixed point theory fascinated many researchers since 1922 with the famous Banach’s fixed

point theorem called Banach contraction principle, see [3].

This theorem provided a technique for solving a variety of applied problems in mathemati-

cal sciences and engineering. Subsequently, the superb result of Banach was extended and

generalized by several authors using various contractive conditions in different spaces.

Existence of a fixed point for contraction type maps in partially ordered metric spaces

has been considered recently in [1,4 and 5], where some applications to matrix equation,

ordinary differential equations and integral equations are presented.

Inspired by Theorem 6 in [2], it is our purpose in this talk to prove unique fixed point

theorems for nonlinear operator in complete partially ordered metric space. Example is

furnished to illustrate the validity of our result. Afterwards, we give an application to

ordinary differential equations.
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Limit cycle of the discontinous piecewise system formed by cubic

Hamiltonian system separated by a straight line
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Abstract: The periodic orbits play a main role in natural phenomena, as the revolution of

the Earth around the Sun, and the moon’s rotation around the earth. Due to the existance

of periodic orbit in many natural phenomena many authors are interested in the study of

periodic solution. So in mathemathics and more precisely in the qualitative theory the

study of isolated periodic solution of is the main defficult obdject in the qualitative theory

of planar differential systems. We recall that the limit cycle is an isolated periodic solution

in the set of all periodic solution of such system.

In 1900, David Hilbert presented 23 mathematical problems at the Paris Conference of

the International Congress of Mathematicians. One of them, remains open to this day, is

known as 16th Hilbert problem or the extend of 16th Hilbert problem.

The solution of the second part of the sixteenth Hilbert’s problem for discontinuous

piecewise differential systems have deserved the attention of many researchers. It is a

question of finding the upper bound and the possible configuration of the limit cycles for

a planar polynomial differential system of degree n. Here we are interested in solving the

second part of the sixteenth Hilbert’s problem for the discontinuous piecewise differential

systems separated by straight line and formed by an arbitrary differential cubic Hamilto-

nian system with nilpotent centers and an arbitrary differential cubic Hamiltonian system

with nilpotent saddles.

Keywords: Discontinous piecewise differential system, limit cycles, straight line, Hamil-

tonian planar polynomial vector field with linear plus cubic homogeneous terms having a

nilpotent center
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Abstract: In this talk we consider the limit cycles of a class of polynomial differential

Kukles systems of the form

ẋ = −y, ẏ = x− f(x)− g(x)y − h(x)y2 − l(x)y3, (9)

where f(x) = εf1(x) + ε2f2(x), g(x) = εg1(x) + ε2g2(x), h(x) = εh1(x) + ε2h2(x) and

l(x) = εl1(x) + ε2l2(x) where fk(x), gk(x), hk(x) and lk(x) have degree n1, n2, n3 and

n4, respectively for each k = 1, 2, and ε is a small parameter. We obtain the maximum

number of limit cycles that bifurcate from the periodic orbits of the linear center ẋ = −y,

ẏ = x using the averaging theory of first and second order. The main open problem in

the qualitative theory of real planar differential systems is the dermination of limit cycles

which is related to the second part of the 16th Hilbert problem [3]. The knowledge of the

existence or not of periodic solutions is very important for understanding the dynamics of

the differential systems. One of good tools for study the periodic solutions is the averaging

theory, see for instance Sanders and Verhulst [4] and the references therein.

In different works the limit cycles problem and the center problem for the classical Kukles

system

{
ẋ = −y,

ẏ = x + a0y + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy2 + a7y
3.

are studied.

Our main results of system (9) are the following ones.

Theorem . For |ε| 6= 0 sufficiently small, the maximum number of limit cycles of the

generalized Kukles polynomial differential system (3) bifurcating from the periodic orbits

of the linear centre ẋ = −y, ẏ = x

1. using the averaging theory of first order is

λ
′
1 = max

{[n2

2

]
,
[n4

2

]
+ 1

}
.
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2. using the averaging theory of second order is

λ
′
2 = max

{[n2

2

]
,
[n4

2

]
+ 1,

[n1

2

]
+

[
n2 − 1

2

]
,
[n1

2

]
+

[
n4 − 1

2

]
+ 1,

[
n1 − 1

2

]
+ µ

′
,

[
n2 − 1

2

]
+

[n3

2

]
+ 1,

[
n4 − 1

2

]
+

[n3

2

]
+ 2,

[
n3 − 1

2

]
+ µ

′
+ 1

}
,

where µ
′
= min

{[
n2

2

]
,
[

n4

2

]
+ 1

}
.

In [2] it has been shown that there exists generalized Kukles equation (??), having at

least λ2 = max
{[

n1

2

]
+

[
n2−1

2

]
,
[

n1

2

]
+

[
m
2

]− 1,
[

n1+1
2

]
,
[

n3+3
2

]
,
[

n3

2

]
+

[
m
2

]
,
[

n2+1
2

]
+

[
n3

2

]
,
[

n2

2

]
,[

m−1
2

]
,
[

n1−1
2

]
+ µ,

[
n3+1

2

]
+ µ, 1

}
limit cycles. The result in Theorem 2 improves this lower

estimate
(
λ
′
2 > λ2 for all n1 ≥ 1, n2 ≥ 1, n3 ≥ 1, m ≥ 2 and n4 ≥ max{3, n2, m− 1}) . For

each fixed n1 ≥ 1, n2 ≥ 1 n3 ≥ 1 and m ≥ 2 there exists n
′
4 ≥ max{3, n2,m− 1} such that

λ
′
2 > λ2 for all n4 ≥ n

′
4.

Keywords: Limit cycle, Averaging theory, Kukles systems.
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Abstract: In this talk, we study the existence of monotone positive solution for the

following nonlinear fourth order boundary value problem with mixed integral and multi-

point boundary conditions

u′′′′(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1), (10)

u′(0) = u′(1) = u′′(0) = 0, u(0) = α

∫ ξ

ν

u(s)ds +
n∑

i=1

βiu
′(ηi), (11)

where

H1) f ∈ C([0, 1]× [0,∞)× [0,∞), [0,∞)).

H2) α ≥ 0; βi ≥ 0, and 0 ≤ ν < η1 < η2 < ... < ηn < ξ ≤ 1, 1 ≤ i ≤ n.

Our main tool is a fixed point theorem in a cone.

Keywords: Existence, monotone positive solution, fixed point theorem, boundary value

problem, cone.
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collocation method based on cardinal functions
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Abstract: In the last decades, there has been an increasing interest in applying cardinal

basis functions [1] for various types of problems. Spectral methods [2, 3] have been exten-

sively used to find approximate solutions of various types of linear and nonlinear equations

such as differential equations and integral equations. They have a wide range of applica-

tions in science and engineering. Numerical methods are important tools for calculating

approximation solutions of stochastic differential equations. In recent years many numeri-

cal methods for deterministic and stochastic integral equations have been designed. Noting

that finding the exact solutions for most of these equations is hard, therefore, we have to

apply approximate numerical methods to obtain numerical solutions. In this work, we give

a new numerical technique for solving stochastic integral equations. A new operational

matrix for integration of cardinal Legendre polynomials are introduced. By using this new

operational matrix of integration and the so-called collocation method, stochastic nonlinear

integral equations are reduced to systems of algebraic equations with unknown coefficients.

Only small dimension of Legnedre operational matrix is needed to obtain a satisfactory

result. Some error estimations are provided and the results of numerical experiments are

compared with the analytical solution in illustrative examples to confirm the accuracy and

efficiency of the presented method.

In recent years many numerical methods for deterministic and stochastic integral equations

have been designed, for example, Adomian method, implicit Taylor methods and recently

the operational matrices of integration for orthogonal polynomials, Legendre wavelets,

Chebychev polynomials,..etc. Several analytical and numerical methods have been pro-

posed for solving various types of stochastic problems with the classical Brownian motion.

Noting that finding the exact solutions for most of these equations is hard, therefore, we

have to apply approximate numerical methods to obtain numerical solutions. The main

characteristic of the approach using this technique is that it reduces these problems to a

systems of algebraic equations which simplifying the problem. In recent years, Cardinal
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functions have been finding an important role in numerical analysis, in particulary for

solving integral equations In this talk, we use cardinal Legendre function to find numerical

solution of the following stochastic integral equations.

X(t) = X0 +

∫ t

0

a(s,X(s))ds +

∫ t

0

b(s,X(s))dB(s), (12)

under the initial condition X(0) = X0, where X(t) is an unknown process, which shoud

be computed. for 0 ≤ t, s ≤ 1, X0 is a random variable, B(s) is a Brownian motion and

where a(s,X(s, ω)), b(s,X(s, ω)) for s, t ∈ [0, 1] are known stochastic processes defined on

the same filtered probability space (Ω,F ,Ft, P ) with natural filtration Ft, X0 is the known

random variable with E|X0|2 < +∞ and X(t) is unknown stochastic process. The second

integral in (12) is the Ito integral. Furthermore, all Lebesgue’s and Ito integrals in (12)

are well defined. Note that the existence and the uniqueness of a solution for the problem

(12) are investigated in [4].

Keywords: Legendre polynomials, Stochastic differential equation, Spectral method,

Brownian motion, Collocation method, Convergence analysis.

References:

1. Boyd.J.P, Chebychev and Fourier Spectral Methods, Dover Publications, Inc., 2000.

2. Canuto C, Hussaini M, Quarteroni A, Zang T, Spectral methods in fluid dy-

namics, Berlin: Springer, 1988.

3. Funaro.D, Polynomial Approximation of Differential Equations, Springer Verlag,

New York, 1992.

4. Kloeden, P.E, E. Platen, Numerical solution of stochastic differential equations,

Springer, Berlin, 1992.

47



RDOPDE 22: Ordinary Differential Equations and Continuous Dynamical Systems

On the first integral for a class of Kolmogorov systems

Rachid Boukoucha (1)
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Abstract: Many mathematical models in biology science and population dynamics,

frequently involve the systems of ordinary differential equations. Kolmogorov models are

widely used in ecology to describe the interaction between two populations, and a limit

cycle corresponds to an equilibrium state of the system. There are many natural phenom-

ena which can be modeled by the Kolmogorov systems such as mathematical ecology and

population dynamics, chemical reactions, plasma physics, hydrodynamics, economics, etc...

In this talk we charaterize the integrability and the non-existence of limit cycles of

Kolmogorov systems of the form





x′ = x

(
P (x, y) +

(
R(x,y)
S(x,y)

)λ
)

,

y′ = y

(
Q (x, y) +

(
R(x,y)
S(x,y)

)λ
)

,

(13)

where P (x, y) , Q (x, y) , R (x, y) , S (x, y) are homogeneous polynomials of degree n, n, m,

a respectively and λ ∈ Q∗.
Our main result on the Kolmogorov system (13) is the following.

Theorem . Consider a Komogorov system (13), then the following statements hold.

(a) If (Q (cos θ, sin θ)− P (cos θ, sin θ)) cos θ sin θ 6= 0, R (cos θ, sin θ) S (cos θ, sin θ) ≥ 0,

S (cos θ, sin θ) 6= 0 for θ ∈ (
0, π

2

)
and λm− λa 6= n, then system (13) is integrable.

Moreover, the system (13) has no limit cycle.

(b) If (Q (cos θ, sin θ)− P (cos θ, sin θ)) cos θ sin θ 6= 0, S (cos θ, sin θ) 6= 0,

R (cos θ, sin θ) S (cos θ, sin θ) ≥ 0 for θ ∈ (
0, π

2

)
and λm − λa = n, then system (13) is

integrable.
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Moreover, the system (13) has no limit cycle.

(c) If (Q (cos θ, sin θ)− P (cos θ, sin θ)) cos θ sin θ = 0 for all θ ∈ R, then system (13)

has the first integral H (x, y) = y
x
.

Moreover, the system (13) has no limit cycle.

Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.
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Some Results for a Nonlinear Fourth-Order Boundary Value

Problem with Integral Boundary Condition
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Abstract: This talk is concerned with the existence of at least one positive monotone

solution for a class of nonlinear fourth order boundary value problems with integral bound-

ary condition. Our analysis relies on Leary-Shauder fixed point theorem and properties

of Green’s function. Two examples are presented to illustrate our theoretical results.

Differential equations appear in almost all areas of the science and technology: Mathe-

matics, physics, viscoelasticity, chemistry, biology, engineering, mechanics, and economics.

In practice, only positive solutions can be useful because they correspond to measurable

parameters such as temperature, density ..., parameters that are used in different laws of

physics. The resolution of differential equations or even boundary problems associated with

differential equations, is a very large field investigation. Recently, the study of existence

of positive solution to fourth-order boundary value problems has gained much attention

and is rapidly growing field. In this talk, we are concerned with the following fourth-order

boundary value problem having an integral boundary condition

u(4)(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1), (14)

u′(0) = u′(1) = u′′(0) = 0, u(0) =

∫ 1

0

g(s)u′(s)ds, (15)

where

(C1) f ∈ C([0, 1]× [0, +∞)× [0, +∞), [0, +∞)),

(C2) g ∈ C([0, 1], [0,∞)).

For convenience, we denote α =
∫ 1

0
g(t)dt, β =

∫ 1−θ

θ
g(t)dt.

At first, we consider the Banach space X = C1([0, 1],R) equipped with the norm

‖u‖ = max
{
||u||∞, ||u′||∞

}
.
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Let θ ∈ (0, 1
2
) be fixed. Define the cone K ⊂ X

K =

{
u ∈ X, u(t) ≥ 0, u′(t) ≥ 0, t ∈ [0, 1] : min

t∈[θ,1−θ]
u(t) ≥ θ3

6

(1 + β)

(1 + α)
‖u‖

}
,

Let A : K → X the operator defined as A : K → C[0, 1]

Au(t) =

∫ 1

0

T (t, s)f(s, u(s), u′(s))ds, t ∈ [0, 1]. (16)

Lemma The operator A defined by (16) is completely continuous and A(K) ⊂ K.

Notation: For convenience, we introduce the following notations

f δ = limx+y→δ

{
max0≤t≤1

f(t,x,y)
x+y

}
, Λ1 = 1 + α, Λ2 =

Λ−1
1

2
, where δ denotes either 0 or

∞.

Theorem 1.

If 0 ≤ f 0 < Λ2, then boundary value problem (14)-(15) has at least one monotone positive

solution in K.

Theorem 2.

If 0 ≤ f∞ < Λ2, then the problem (14)-(15) has at least one monotone positive solution.

Keywords: Monotone positive solutions, Leray-Schauder’s fixed point theorem, fourth-

order integral boundary value problems, existence.
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Analytic semigroups generated by the dispersal process in two
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(2) Università degli Studi di Bologna, Dipartimento di Matematica, Piazza di Porta S.

Donato, 5, 40126 Bologna, Italy

E-mail: angelo.favini@unibo.it

(3)LMAH, Normandie Univ., UNIHAVRE, LMAH, FR-CNRS-3335, 76600 Le Havre,

France

E-mail: rabah.labbas@univ-lehavre.fr
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Abstract: In this talk we study an elliptic differential equation set in two habitats

with skewness boundary conditions at the interface. This problem represents the linear

stationary case of dispersal problems of population dynamics which incorporate responses

at interfaces between the habitats.

We prove that this operator generates an analytic semigroup in an adapted space of Hölder-

continuous functions.

Our goal in this talk is to analyze the analogous situation as [2] in two dimension space.

More precisely, we will be concerned with the study of the analyticity of the C0-semigroup

generated by the dispersal process in two habitats under some skewness condition and con-

tinuous dispersal condition at the interface which represent the behavior of the individuals

at boundaries. Our problem is reduced to an operational form of the type:





u′′ (x)−B2u (x) = G(x) on ]−l, 0[ ∪ ]0, L[
u−(−l) = 0 and u′+(L) = 0{

d−
[
u′′−(0−) + Au−(0−)

]− r−u−(0−)
= d+

[
u′′+(0+) + Au+(0+)

]
+ r+u+(0+)

(1− p)d−u′−(0−) = pd+u′+(0+).
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The operator A verifies the following ellipticity hypothesis:

ρ(A) ⊃ [0, +∞[ et ∃C > 0 : ∀λ ≥ 0,
∥∥(A− λI)−1

∥∥
L(E)

≤ C

1 + |λ| .

Where ρ(A) denotes the resolvent set of A.

The operator B := −(−A)
1
2 generates an analytic semigroup which makes it possible

to find a representation of the solution.

Keywords: Semigroups ; population dynamics ; elliptic differential equation.
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BLOW UP OF SOLUTIONS FOR A HYPERBOLIC-TYPE

EQUATION WITH TIME DELAY
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Abstract: The first equations with delay were studied by brothers Bernoulli and

Leonard Euler in the eighteenth century. Systematical study started at the 1940s by A.

Myshkis and R. Bellman. Since 1960 there have been appeared many surveys on the sub-

ject. Robust control of systems with uncertain delay was started in the middle of 1990s and

led to the ”delay bloom” in the begining of the twenty-first century.Time-delay systems are

also called systems with aftereffect or dead-time, hereditary systems, equations with devi-

ating argument, or differential-difference equations. They belong to the class of functional

differential equations which are infinite-dimensional, as opposed to ordinary differential

equations. Time-delay often appears in many control systems (such as aircraft, chemical

or process control systems, and communication networks), either in the state, the control

input, or the measurements. There can be transport, communication, or measurement

delays. Controlling the behavior of solutions for partial differential equations with time

delay effects has become an active research area. Generally, delay effects occur in many

applications and practical problems such as physical, chemical, biological, thermal and

economics. In many cases, delay is a source of instability, even an arbitrarily small delay

may destabilize a system which is uniformly asymptotically stable in the absence of delay

unless additional conditions or control terms have been used. In this work, we consider a

hyperbolic-type equation with time delay. Under appropriate conditions, we establish the

blow up of solutions.

Keywords: Blow up, Hyperbolic-type equation, Time delay.
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3. M. Kafini and S.A. Messaoudi, Local existence and blow-up of positive-initial-

energy solutions of a nonlinear wave equation with delay, Nonlinear Stud., 27(3),

(2020), 865–877.

4. S. Nicaise and C. Pignotti, Stability and instability results of the wave equation

with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim,

45(5), (2006), 1561–1585.
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Abstract: In fluid dynamics, the blow-up problem of solutions has attracted much atten-

tion and challenge among physicists and mathematicians. In this talk, we study a singular

nonlinear one-dimensional viscoelastic nonlocal problem with Balakrishnan-Taylor damp-

ing terms and logarithmic nonlinearity source. We demonstrate that the logarithmic non-

linearity source of polynomial type is able to force solutions to blow up infinite time even

in presence of stronger damping with non positive initial energy combined with a positive

initial energy. More precisely, we study blow-up of solutions of the following problem:

utt (t)−M (t)
1

x
(xux (t))x +

∫ t

0

g (t− s)
1

x
(xux (x, s))x ds + aut (t) = u (t) |u (t)|p−2 , in Q,

(17)



u(x, 0) = u0(x), ut(x, 0) = u1 (x) , x ∈ (0, α) ,

ux(α, t) = 0,
∫ α

0
xu (x, t) dx = 0 t ∈ [0, T ] ,

(18)

where Q := (0, α) × (0, T ) , α < ∞, T < ∞, p > 4, g (.) : R+ → R+ are given functions

which will be specified later, and M (t) := ξ0+ξ1 ‖ux (t)‖2
L2

x(0,α)+σ (ux (t) , uxt (t))L2
x(0,α) , where

u is the plate transverse displacement, x is the spatial coordinate in the direction of the

fluid flow, and t is time. The viscoelastic structural damping terms are denoted by ξ1, σ is

the nonlinear stiffness of the membrane, and ξ0 is an in-plane tensile load. All quantities

are physically non-dimensional zed and ξ0, ξ1 and σ are fixed positive.

Definition 1. A solution u of (1) − (2) is called blow-up if there exists a finite time T ∗

such that

lim
t→T ∗−

(
‖ux (t)‖2

L2
x(0,α)

)−1

= 0.

Further assumptions on g which ensure the Blow-up phenomena of system (1)− (2) are
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(A)





g (s) ≥ 0, g′ (s) ≤ 0 and
∫∞
0

g (s) ds <
p (p− 2)

(p− 1)2 ξ0 < ξ0, for p > 4.

Keywords: Balakrishnan–Taylor damping; Viscoelastic equations; blow-up.
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Abstract: In this talk, we are concerned to study the existence and non-existence of

solutions to the following Kirchhoff-type systems involving the critical Sobolev exponent

(P )





−(a1 + b1 ‖u‖p) [div (|∇u|p−2∇u)] =
2q

q + q′
|u|q−2u |v|q′ + λ1f (x) ,

−(a2 + b2 ‖v‖p) [div (|∇v|p−2∇v)] =
2q′

q + q′
|u|q |v|q′−2 v + λ2g (x) ,

(u, v) ∈ W 1,p
(
RN

)×W 1,p
(
RN

)
in RN

where 1 < p < N, a1, a2 ≥ 0, b1, b2 > 0, q, q′ > 1, q + q′ = p∗, p∗ = pN/ [N − p] is the

critical Sobolev exponent, λ1, λ2 > 0 are a parameters, f, g ∈ W ∗\ {0} .

Let the positive constant

Sq,q′ := inf
(u,v)∈W 1,p(RN)×W 1,p(RN)

(u,v)6=(0,0)

‖u‖p + ‖v‖p

(∫
RN |u|q |v|q′ dx

)p/p∗

First we introduced some assumptions which we need to prove our results

(H1) p∗ = 2p, a2 = a2 = 0, b1, b2 > S−2
q,q′ .

(H2) p∗ = 2p, b1, b2 ≥ S−2
q,q′ , a1, a2 > 0.

(H3) p∗ > 2p, a > 0, b > p∗−p
p

(
22p−p∗

pa

) 2p−p∗
p∗−p

2
p

p∗−p
(Sq,q′)

− p∗
p∗−p .

(H4) p∗ = 2p, a2 = a2 = 0, b1, b2 > S−2
q,q′ .

(H5) p∗ = 2p, b1, b2 ≥ S−2
q,q′ , a1, a2 > 0.

The main results in this paper are the following:

Theorem 1.[Non-existence Result] Suppose that (λ1, λ2) = (0, 0) and assume (H1) or

(H2) or (H3) .Then the problem (P ) has no non-trivial solution.

Theorem 2.[Existence of a critical point with negative energy] Suppose that f, g ∈
W ∗ (

RN
) \ {0}, and assume (H4) or (H5) then there exists a constants λ∗1, λ

∗
2, λ

∗
3 > 0 such
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that for any λ1, λ2 verified (19), system (P ) has a solution (u1, v1) with negative energy.





λ1 ≤ λ∗1 if λ1 6= 0 and λ2 = 0
λ2 ≤ λ∗2 if λ1 = 0 and λ2 6= 0

min (λ1, λ2) ≤ λ∗3 if λ1 6= 0 and λ2 6= 0
(19)

Keywords: Variational methods, Mountain Pass Theorem, Ekeland Variational Prin-

ciple, critical exponent of Sobolev, Kirchhoff problems.
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Abstract: The purpose of this presentation is to consider a wave equation in an interval

with two ends moving of fixed length L and traveling with constant speed v is strictly less

then the characteristic speed of the wave, i.e.

0 < v < 1. (20)

For L > 0 and T > 0, we denote the interval

It := (vt, L + vt) , for t ∈ (0, T ) .

Let us now consider the following wave equation with homogeneous Dirichlet boundary

conditions




φtt − φxx = 0, for x ∈ It, t ∈ (0, T ) ,

φ (vt, t) = φ (L + vt, t) = 0, for t ∈ (0, T ) ,

φ(x, 0) = φ0 (x) , φt (x, 0) = φ1 (x) , for x ∈ I0,

(WP)

Under the assumption (20), we already know that for every initial data

φ0 ∈ H1
0 (I0) , φ1 ∈ L2 (I0) , (21)

the solution of Problem (WP) exists and satisfies

φ ∈ C
(
[0, T ]; H1

0 (It)
)

and φt ∈ C
(
[0, T ]; L2 (It)

)
. (22)

The exact solution of the Problem is given by a series formulas

φ(x, t) =
∑

n∈Z∗
cn

(
enπi(1−v)(t+x)/L − enπi(1+v)(t−x)/L

)
, for x ∈ It and t ∈ (0, T ) , (23)
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where the coefficients cn ∈ C are given in function of the initial data (21). Then, we show

that the series formulas (WP) can be manipulated to establish the following results:

• The Energy Ev (t) of the solution Problem (WP) , given by

Ev (t) =
1

2

∫ L+vt

vt

φ2
x(x, t) + φ2

t (x, t) dx, for t ≥ 0. (24)

is periodic of period

Tv :=
2L

1− v2

and remains bounded in time under the assumption (20).

• The wave equation (WP ) is exactly observable at any endpoint x = xb + vt, where

xb = 0 or xb = L. The time of observability is exactly equal to Tv. The observability

constants are explicitly given in function of L and v.

• Using the Hilbert uniqueness method (HUM), the above observability results implies

controllability result at each one endpoints.

Keywords: Wave equation; time-varying domains; energy estimates; boundary ob-

servability; Hilbert Uniqueness Method.
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Abstract: In this talk, we consider an initial-boundary value problem for the nonlinear

wave equation containing the p−Laplacian operator,

utt − φ(x)div
(|∇u|p−2∇u

)
+ µut = b|u|m−2u.

Under suitable conditions on the initial datum, we prove, by using Faedo-Galerkin method,

the existence of local weak solutions, which can be extended globally provided the weight

of p−Laplacian operator dominates the source in an appropriate sense and establish a

polynomial decay result. Moreover, a blow-up result is proved for solutions with negative

initial total energy.

In this talk, we investigate a global studies related to global existence and asymp-

totic behavior properties of solutions for initial boundary value problem of wave equation

containing the p−Laplacian operator

{
utt − φ(x)div (|∇u|p−2∇u) + µut = b|u|m−2u in Rn × R+

u(x, 0) = u0(x) ∈ D1,p(Rn), ut(x, 0) = u1(x) ∈ L2
ρ(Rn),

(25)

where the spaces D1,p(Rn), L2
ρ(Rn) and φ(x) > 0,∀x ∈ Rn, (φ(x))−1 = ρ(x). The function

ρ : Rn → R∗+, ρ(x) ∈ C0,γ(Rn) with γ ∈ (0, 1) and ρ ∈ Ln/2(Rn) ∩ L∞(Rn).

Keywords: Generalized Sobolev spaces, Viscoelastic wave equation, Unbounded do-

mains, Blow up, General decay.
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Existence and lower bounds for the blow-up time in logarithmic

wave equation with nonlinear dynamical boundary conditions
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Abstract: In this presantation, the initial boundary value problem of linear wave equation

with dynamic boundary condition which is including logarithmic source term and nonlin-

ear damping term have been investigated. Dynamic boundary problems are very natural

in many mathematical models, such as hydrologic filtration process, heat transfer between

solid and moving fluid, thermoelasticity, diffusion phenomenon, hydrodynamics (see [1,5]

). Many authors gave big attention to this problem in the absence of logarithmic source

term for quite a long time. They made a lot of progress, as reported in [2, 4, 6,10] with

references therein. Lately, wave eqaution with logarithmic source term which is applied in

many branches of physics was discussed by many author (see [3, 7, 8, 9]). Consequently, by

motivated this work we examine the effect of logarithmic nonlinearity to dynamic boundary

condition. We study local existence result by using Schauder fixed point theorem. Under

suitable assumptions on initial data, the lower bound time of blow up result is investigated.

These results fill in the gaps in previous studies on this type of models.

Keywords: Blow up, Existence, Lower bound, Logarithmic source term
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9. E. Pişkin and N. Irkıl, Well-posedness results for a sixth-order logarithmic Boussi-

nesq equation, B no.33 vol.13, (2019),3985-4000.

10. E. Vitillaro, Global existence for the wave equation with nonlinear boundary damp-

ing and source terms, Journal of Differential Equations no.186 vol.1, (2002),259-

298.

67



RDOPDE 22: Partial Differential Equations

General stability result for an abstract viscoelastic equation with

time delay

Houria Chellaoua (1), Yamna Boukhatem (2)

(1) Laboratory of Pure and Applied Mathematics, University of Laghouat, P.O. BOX

37G, Laghouat (03000), Algeria.

E-mail: chellaoua.houria@univ-ghardaia.dz

(2) Laboratory of Pure and Applied Mathematics, University of Laghouat, P.O. BOX

37G, Laghouat (03000), Algeria.

E-mail: y.boukhatem@lagh-univ.dz

Abstract: In this talk, we consider an abstract viscoelastic equation with time delay and

a nonlinear source term. Let H be a real Hilbert space with inner product and related

norm denoted by 〈., .〉 and ‖ . ‖, respectively. Let A : D(A) −→ H and B : D(B) −→ H

be self-adjoint linear positive operators with domains D(A) ⊂ D(B) ⊂ H such that the

embeddings are dense and compact. h : R+ −→ R+ is the kernel of the memory term,

τ > 0 represents a time delay and F : D(A
1
2 ) → H is function satisfying some conditions

to be specified later. We consider the following abstract evolution equation





utt(t) + Au(t)− ∫ t

0
h(t− s)Bu(s)ds + µ1ut(t) + µ2ut(t− τ) = F (u(t)), t ∈ (0, +∞),

ut(t− τ) = f0(t− τ) t ∈ (0, τ),
u(0) = u0, ut(0) = u1,

(26)

where the initial datum (u0, u1, f0) belongs to suitable spaces, µ1 is a positive constant

and µ2 is a real number such that |µ2| ≤ µ1. We are interested in giving optimal, explicit

and general decay rates of solution of problem (26) under some suitable assumptions.

More precisely, we are intending to extend the results of Messaoudi 5 and Mustafa 6 to the

abstract viscoelastic equation with time delay in Hilbert spaces; the system (26). is strictly

increasing and strictly convex C2 function on (0, r], r ≤ h(0), with G(0) = G′(0) = 0, such

that

h′(t) ≤ −ζ(t)G(h(t)), ∀t ≥ 0, (27)

where ζ : R+ → R+ is a nonincreasing differentiable function, we establish explicit and

general decay rate results of the energy by introducing a suitable Lyaponov functional and
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some proprieties of the convex functions under suitable conditions. The energy functional

E associated with problem (26) defined by

E(t) =
1
2

(∥∥∥A
1
2 u

∥∥∥
2

−
∫ t

0

h(s)ds
∥∥∥B

1
2 u

∥∥∥
2

+ ‖ut‖2 + (h ¦B
1
2 u)(t)

)

−F(u) +
ξτ

2

∫ 1

0

‖z(ρ, t)‖2 dρ, ∀t ∈ R+, (28)

where

(h ¦B
1
2 u)(t) =

∫ t

0

h(t− s)
∥∥∥B

1
2 u(t)−B

1
2 u(s)

∥∥∥
2

ds (29)

and ξ a positive constant and we finish by some applications to illustrate our results. This

work generalizes the previous results without time delay term to those with delay.

Keywords: Abstract viscoelastic equation, general decay, nonlinear source term, time

delay.
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Abstract: In this talk, we identify unknown boundary in a linear parabolic equation. The

main tool used here is a method introduced by J. L. Lions called sentinel method. We prove

that the existence of the sentinel is equivalent to solve a null controllabilty problem by using

the Carleman inequality, which is an observability inequality and is originally an essential

tool for studying the unique continuity of solutions to partial differential equations.

Let Ω ⊂ Rn be an open bounded domain, its boundary Γ be of class C2. We denote

Ω× (0, T ) by Q and Γ× [0, T ] for fixed time T > 0 by Σ.

We consider the following system modeling a problem of pollution





∂z
∂t
−∆z + p0(x)z = 0 in Ω× (0, T ) ,

z (x, T ) = y0 + τ ŷ0 in Ω,

z (x, t) =

{
σ +

∑m
1 λiσ̂0

0
on
on

Γ0 × (0, T )
Γ�Γ0 × (0, T ) .

(30)

where
- The boundary condition is unknown on a part Γ0 × (0, T ), its structure is σ +

∑m
1 λiσ̂0,

with σ and σ̂0 are known whereas λi are unknown.

- The initial condition is also partially unknown where y0 is known and τ ŷ0 is unknown.

we are interested in identifying the parameters λi without any attempt to calculate τ ŷ0

in the system (30) which models a problem of pollution from observing the flux of the data
∂y
∂ν

on a part O ∈ L2(Γ× (0, T )).

For this aim, we use the theory of sentinel which lies on three considerations: - A state

equation: the solution of the problem (30). - An observation: ∂y
∂ν

= m0. - A functional S

defined for h0 ∈ L2(O × (0, T )) as follow

S(λ, τ) =

∫ T

0

∫

O

(h0 + u)
∂y

∂ν
dΓdt. (31)
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We define the adjoint state as follow




−∂y

∂t
−∆y + p0(x)y = 0 in Ω× (0, T ) ,

y (x, 0) = 0 in Ω,
y (x, t) = h0χO + wχω on Γ× (0, T ) ,

(32)

which satisfies.
y(0) = 0. (33)

Let Y ⊥ the orthogonale of Y in L2(ω×(0, T )), and let also Yθ = 1
θ
Y , where θ is positive

function precisely defined later.

Proposition: The existence of the sentinel (2) holds if and only if the null boundary

controllability problem (32) which satisfies (4) has a solution.

Theorem: Given h0 ∈ L2(O × (0, T )), w0 ∈ Yθ, and p0 ∈ L∞(Q). Then, there exists a

control functon v ∈ L2(ω × (0, T )), and

v ∈ Y ⊥ (34)

such that the solution q = q(x, t) of the following problem




−∂y

∂t
−∆y + p0(x)y = 0 in Ω× (0, T ) ,

y (x, 0) = 0 in Ω,
y (x, t) = h0χO + (ω0 − v)χω on Γ× (0, T ) ,

(35)

satisfies
q(x, 0, v) = 0 (36)

Keywords: Linear parabolic equation, Sentinel method, Null controllabilty, Carleman

inequality.
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Kirchhoff type equations with singular exponential nonlinearities
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Abstract: In this work, We establish the existence of a positive solution for a nonlocal

Kirchhoff problem of the type





−M




∫

Ω

|∇u|N dx


 ∆Nu = f(x,u)

|x|β in Ω,

u = 0 on ∂Ω

(37)

where Ω is a smooth bounded domain in RN containing the origin (N ≥ 2),0 ≤ β < N

and f , m are continuous functions that satisfy some assumptions.

Now, we are ready to state our main result.

Theorem 1. Under assumption (M1)− (M3) and (f1)− (f4) , problem a positive solution

u ∈ W 1,N
0 (Ω).

We prove this Theorem by mountain pass Lemma and the Palais-Smale sequence.

Lemma 1. Assume that conditions (M1) , (f1) − (f3) hold, then there exist positive

constants τ and ρ such that

E(u) ≥ τ > 0, ∀u ∈ W 1,N
0 (Ω) : ‖u‖ = ρ.

Proof:
From the assumptions, (f1) ,(f2) and (f3) for ε > 0, there exists C > 0 and q > N we have

∫

Ω

|F (x, u)|
|x|γ dx ≤ ε

∫

Ω

|u|N
|x|γ dx + C

∫

Ω

|u|qeαuN/N−1

|x|γ dx (38)

≤ εC1 ‖u‖N + C2‖u‖q. (39)

For ‖u‖ = ρ where RN/N−1 ≤ αn

2α
(1 − γ

N
) , thanks to Moser-Trudinger inequality and by

(3) hence

E (u) ≥ (
m0

N
− C1ε

) ‖u‖N − C2‖u‖q,
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Where τ =
(

m0

N
− C1ε

) ‖u‖N − C2‖u‖q.

Lemma 2.

Assume that conditions (M1) and (f1) (f4) hold. Then, there exists e ∈ W 1,N
0 (Ω) with

‖e‖ > ρ such that I(e) < 0.

Proof:
by (f4), for η > max{N, Nk + N} there exist C1, C2 > 0 such that

F (x, t) ≥ C1t
η − C2 ∀(x, t) ∈ Ω× [0, +∞). (40)

from (M1) and (4) we have

E(tu0) ≤
{

b0
N

+ b1
N

tN + b2
Nk+N

tNk+N − C1t
η
∫
Ω

u0
η

|x|β dx + C2

∫
Ω

1

|x|β dx ifk 6= −1
b0
N

+ b1
N

t + b2
N

ln(t)− C0t
η
∫
Ω

u0
η

|x|β dx + C2

∫
Ω

1

|x|β dx if k = −1,

from which we conclude that I(tu0) → −∞ as t → +∞, provided that η > max{N, Nk +

N} Hence, the result follows by considering e = t∗u0 for some t∗ > 0 enough large.

Lemma 3.

Every Palais-Smale sequence of E is bounded in W 1,N
0 (Ω)

Keywords: Exponential critical growth; Kirchhoff equation; The mountain pass ge-

ometry ;Trudinger-Moser inequality .
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A Thermo-Electro-viscoelastic Contact Problem with Adhesion
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Abstract: This talk is devoted to the study of the mathematical model involving a fric-

tional contact between an electro-elasto-viscoplastic body with thermal effects and a con-

ductive adhesive foundation. The process is mechanically dynamic and electrically static.

The contact is modeled with a normal compliance where the adhesion is taken into account

and a regularized electrical conductivity condition. We derive a variational formulation of

the problem and prove its unique weak solution. The proof is based on nonlinear evolution

equations with monotone operators, differential equations and fixed point arguments.

Keywords: piezoelectric materials, thermoviscoelastic, dynamic process, variational

inequality, sub-differantial, fixed point.
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Abstract: In this talk we study the global (in time) existence of small data solutions to

the Cauchy problem for semilinear σ-evolution models with two dissipative terms, namely,

{
utt + (−∆)σu + (−∆)δut + (−∆)θut =

∫ t

0
(t− τ)−γf

(
u(τ, ·)) dτ,

u(0, x) = u0(x), ut(0, x) = u1(x),
(41)

where σ ≥ 1, 0 6 δ < σ/2 < θ 6 σ, γ ∈ (0, 1), and the data (u0, u1) ∈ Lm1(Rn)∩Hs
q (Rn)×

Lm2(Rn) ∩Hs−2σ
q (Rn), s ≥ 0, , q ∈ [1,∞), m1, m2 ∈ [1, q] and f is locally lipschitz func-

tion. We find the sharp critical exponent, under the assumption of small initial data, we

show how the critical exponent is consequently modified for the problem. In particular,

we obtain a new interplay between the fractional order of integration γ in the nonlinear

memory term and the assumption that initial data are small in (u0, u1) ∈ Lm1 × Lm2 , for

some m1, m2 ∈ [1, q].

The motivation of this talk is the influences of the parameter γ in the critical exponent

to (1) and we are interested in connections between the critical exponent of power nonlin-

earity term and critical exponent of memory of nonlinearity term as γ → 1, we prove the

global (in time) existence of small data energy solutions to semilinear models (1). In the

memory of nonlinearity we suppose a ∈ [0, 2σ). So, we assume data u1 from some energy

space, but on the base of q ∈ (1,∞) and with additional regularity Lm, where m ∈ [1, q).

The memory of nonlinearity is allowed to be of classical type or of derivative type as well.

Keywords: Critical exponent, global in time existence, semi-linear evolution equa-

tions, structural damping, non-linear memory term.
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Abstract: we prove some new results on operational second order differential equations

of elliptic type with general Robin boundary conditions in a non-commutative framework.

The study is developed in Hölder spaces under some natural assumptions generalizing

those in 1. We give necessary and sufficient conditions on the data to obtain a unique

strict solution satisfying the maximal regularity property, see 3. This work completes the

one given in 1, 2 and 3.

this talk is devoted to study the following general problem





u′′ (x) + Au (x)− ωu (x) = f(x), x ∈ ]0, 1[

u′ (0)−Hu (0)− µu (0) = d0

u (1) = u1,

(42)

with f ∈ Cθ ([0, 1] ; X), 0 < θ < 1, where X is a complex Banach space, d0, u1 are given

elements in X and A is a closed linear operator of domain D(A) are not necessarily dense

in X. H is a closed linear operator in X, ω, µ are complex parameters.

Set:
Aω = A− ωI and Hµ = H + µI.

We will seek for a strict solution u to (42), i.e. a function u such that:

u ∈ C2 ([0, 1]; X) ∩ C ([0, 1]; D (A)) and u (0) ∈ D (Hµ) .

The method is essentially based on Dunford calculus, interpolation spaces, the semigroup

theory and some techniques as in 1 and 2.
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Our main ellipticity assumption is the following: [0, +∞[ ⊂ ρ (A) and ∃ CA > 0 :

∀, ω > 0,
∥∥(A− ωI)−1

∥∥
L(X)

6 CA

1 + ω
. (43)

Here we do not assume the density of D (A) in X. It is well known that Q = −√−A and

Qω = −√−A + ωI are well defined and generate analytic semigroups
(
exQ

)
x>0

, not neces-

sarily strongly continuous in 0, see, for instance, C. Martinez 4. Note that, D (Q) = D (A).

We get the following theorem as a result:

Theorem: Assume (43). Let f ∈ Cθ ([0, 1] ; X), with 0 < θ < 1 and d0, u1 ∈ X. Then, for

any ω > ω∗1, we have

i) Problem (42) has a unique strict solution u if and only if





(Qω −Hµ)−1 [d0 −Q−1
ω f (0)] ∈ D (Q2)

Q2
ω (Qω −Hµ)−1 [d0 −Q−1

ω f (0)] + f (0) ∈ D (Q)

u1 ∈ D (Q2)

Q2
ωu1 + f (1) ∈ D (Q)

ii) Problem (42) has a unique strict solution u satisfying the maximal regularity property

u′′, Aωu ∈ Cθ ([0, 1] ; X) if and only if





(Qω −Hµ)−1 [d0 −Q−1
ω f (0)] ∈ D (Q2)

Q2
ω (Qω −Hµ)−1 [d0 −Q−1

ω f (0)] + f (0) ∈ DQ (θ; +∞)

u1 ∈ D (Q2)

Q2
ωu1 + f (1) ∈ DQ (θ; +∞)

Keywords: second-order elliptic differential equations; Robin boundary conditions; ana-

lytic semigroup.
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On the Stability of Singular Roesser State Space Models
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Abstract: This work investigates new sufficient conditions for asymptotic stability for

a two-dimensional singular continuous time systems described by Roesser models. The

proposed approach is based on the characteristic polynomial and some linear matrix in-

equality LMIs. Note that Roesser model is a two-dimensional systems which has two

independents variables propagate the state in two independents direction. The obtained

results are compared with existing work. Some illustrated examples and simulations have

been established to show the applicability and accuracy of the proposed method.

The stability of the singular system is defined as follows

lim
t1,t2→+∞

∥∥∥∥
(

xh (t1, t2)
xv (t1, t2)

)∥∥∥∥ = 0 (44)

with the boundary condition supt2R+ ‖xh(0, t2)‖ < +∞ and supt1R+ ‖xv(t1, 0)‖ < +∞.

Based on [1, 2] and [3], we give our main result as an approach to derive a new sufficient

conditions for the asymptotic stability of the considered model.

Theorem . The singular 2D linear continuous time system is asymptotically stable if

there exist a hermitian matrix X0, X1, X2 with X0 ≥ 0, X1 ≥ 0, X2 ≥ 0 satisfying the

following LMIs:

(Ã− Ẽdiag(0, In2))
T X1Ẽdiag(In1 , 0)− ẼT diag(In1 , 0)X1(Ã− Ẽdiag(0, In2)) Â 0 (45)

[
ÃT X2Ẽdiag(0, In2)− ẼT diag(0, In2)X2Ã X0(

ẼT diag(In1 , 0)X2Ẽdiag(0, In2)− ẼT diag(0, In2)X2Ẽdiag(In1 , 0)
)

0

]
Â 0 (46)

Example Let us consider the singular Roesser system with u(t1, t2) = 0 and the system

matrices
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E =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0




, A =




0.4165 1.5350 −0.8697 0.8682 −1.0616
0.0784 −0.9935 0.8470 −0.8316 1.0094
0.3563 6.8170 −3.0333 4.8156 −6.6059
−0.6517 0.1915 −0.1348 1.2781 −1.2468
0.6636 2.1505 −0.5888 1.7413 −1.6655




(47)

By the use of our method we find that the LMIs in Theorem are feasible, and a

feasible solution is as follows

X0 =




1.3996 0.6940 0.6940 0.6940 0.6940
0.6940 1.3996 0.6940 0.6940 0.6940
0.6940 0.6940 1.3996 0.6940 0.6940
0.6940 0.6940 0.6940 1.3996 0.6940
0.6940 0.6940 0.6940 0.6940 1.3996




, (48)

X1 =




0.0000 0.0000 −0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 −0.0000 −0.0000
−0.0000 0.0000 0.9987 0.0131 0.0142
0.0000 −0.0000 0.0131 0.9900 0.0067
0.0000 −0.0000 0.0142 0.0067 1.0106




(49)

X2 =




0.9991 0.0012 0.0019 0.0000 −0.0071
0.0012 1.0000 −0.0014 −0.0000 0.0021
0.0019 −0.0014 0.9963 −0.0000 0.0106
0.0000 −0.0000 −0.00000.0000 0.0000
−0.0071 0.0021 0.0106 0.0000 0.9743




(50)
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Singular nonlinear problems with natural growth in the gradient
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Abstract: In this talk we consider the problem:




−div (a(x, u, Du) = H(x, u, Du) +

a0(x)

|u|θ + f(x) in Ω,

u = 0 on ∂Ω,
(51)

where Ω is an open bounded set of RN , 1 < p < N . The function a : Ω × R × R → RN

is a Carathéodory function which satisfies, for a.e. x ∈ Ω, any s ∈ R and any ξ, ξ′ ∈ RN ,

with ξ 6= ξ′: 



(
a(x, s, ξ)− a(x, s, ξ′)

)
(ξ − ξ′) > 0,

a(x, s, ξ)ξ ≥ α|ξ|p,
|a(x, s, ξ)| ≤ β

(
b(x) + |s|p−2 + |ξ|p−1

)
,

for a given constant α > 0, some constant β > 0, some nonnegative function b ∈
LN/(p−1)(Ω). The function a0 ∈ LN/p(Ω), a0 > 0, the source term f ∈ LN/p(Ω) and

the exponent 0 < θ ≤ 1. Finally the function H(x, s, ξ) is a Carathéodory function which

satisfies:

−c0 a(x, s, ξ)ξ ≤ H(x, s, ξ) sign(s) ≤ γ a(x, s, ξ)ξ a.e. x ∈ Ω,∀s ∈ R ,∀ξ ∈ RN .

For ‖a0‖q and ‖f‖N/p sufficiently small, we prove the existence of at least one solution

u of this problem which is moreover such that the function
(
exp(γ|u|) − 1

)
belongs to

W 1,p
0 (Ω).

A similar result has been proved in the quasilinear case where p = 2 and where the

function a(x, s, ξ) is assumed to have the form a(x, s, ξ) = A(x)ξ, with A(x) is a matrix

bounded entries and coercive.

In the present case the change of unknown function v = µ−1
(
exp(µ|u|) − 1

)
sign(u)

transforms the equation (51) into a quasilinear equation with a quadratic term in Dv which

satisfies a “sign condition, with the good sign”, and a nonlinear term of zeroth-order “bad

sign” which is superlinear and coercive.

The proof of our existence results follows the classical direct method of the calculus of

variations. We use Schauder’s theorem on an approximate problem to prove the existence
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of a fixed point which is a solution of the approximate problem. In the other hand we

obtain an a priori estimate of the solution of the approximate problem, which does not

depend on the approximation.

We then pass to the limit thanks to the a priori estimate.

Keywords: Nonlinear problems, Singular terms, Natural growth in the gradient.
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Abstract: We study existence and regularity of positive solutions for a singular quasi-

linear elliptic system involving gradient term. The approach is based by comparison prop-

erties, a priori estimates and the Schauder’s fixed point theorem.

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary ∂Ω. We deal with the

following quasilinear elliptic system

(P)





−∆p1u = f1(x, u, v,∇u,∇v) in Ω
−∆p2v = f2(x, u, v,∇u,∇v) in Ω
u, v > 0 in Ω
u, v = 0 on ∂Ω.

The nonlinearity terms fi(x, u, v,∇u,∇v) can exhibit singularities when the variables u

and v approach zero, and are subjected to the hypothesis:

(Hf ) There exist constants Mi,mi > 0, γi, θi ≥ 0, ri > N and αi, βi ∈ R such that

mis
αi
1 sβi

2 ≤ fi(x, s1, s2, ξ1, ξ2) ≤ Mis
αi
1 sβi

2 + |ξ1|γi + |ξ2|θi

for a.e. x ∈ Ω, for all s1, s2 > 0, for all ξ1, ξ2 ∈ RN , with

|αi|+ |βi| 6 pi − 1, (52)

−1/ri ≤ αi + βi <
pi − 1

ri

and max{γi, θi} <
pi − 1

ri

, for all i = 1, 2. (53)

The aim of this talk is to establish existence and regularity of (positive) solutions for quasi-

linear singular convective system (P) subjected to the growth condition (Hf ). The main

result is formulated as follows.
Theorem . Under assumption (Hf ); system (P) admits a positive solution (u, v) ∈
C1,σ

0 (Ω)× C1,σ
0 (Ω) for certain σ ∈ (0, 1).

Corollary:

For 1 < p 6 N and M > 0; let h : Ω× R× RN be a Caratheodory function satisfying

|h(x, s, ξ)| 6 M(d(x)µ + ξγ),
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for a.e. x ∈ Ω, for all s ∈ R, and all ξ ∈ RN with

r > N and −1
r

< µ < 0 6 γ < p−1
r

Then, there are constants R > 0 and σ ∈ (0, 1) such that all solutions u ∈ W 1,p
0 (Ω) of

Dirichlet problem { −∆p1u = h(x, u,∇u) in Ω
u = 0 on ∂Ω

belong to C1,σ(Ω) and satisfy the estimate‖u‖C1,σ(Ω) < R. Moreover, there is a constant

kp > 0; depending only on p and Ω ; such that

‖u‖∞ 6 kp‖h(x, u,∇u)‖
1

p−1
r .

Keywords: p-Laplacian; singular systems; regularity; convection terms; fixed point.
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Abstract: An axially moving beam in a two-dimensional space is considered with nonlin-

ear tension. A suitable boundary control is applied at the free end of the beam to suppress

the undesirable vibration. The exponential stability result is proven by Lyapunov method.
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généraliser une suite des solutions approchées de l’équation de

transport-diffusion dans Rd
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Résumé: Comme il est bien connu que l’équation de transport-diffusion est une équation

qui représente de nombreux phénomènes météorologiques (voir par exemple 1, 2,... ), nous

essayons donc de développer des résultats liés à cette équation. Pour cela, nous utilisons

l’opérateur de prolongement impair pour construire une suite des solutions approchées de

l’équation de transport-diffusion dans Rd
+ à partir d’une suite des solutions approchées de

l’équation de transport-diffusion dans Rd qui a été construite par le noyau de chaleur.

On considère l’équation de transport-diffusion

∂tu(t, x) + v(t, x) · ∇u(t, x) = κ∆u(t, x) + f(t, x, u(t, x)), (54)

où v(t, x) et f(t, x, u) sont des fonctions données. Dans 3 une famille de solutions ap-

prochées pour (54) a été construite en utilisant le noyau de la chaleur Θn(.) (solution

fondamentale de l’équation de la chaleur) sur chaque pas du temps discrétisé et leur con-

vergence vers la solution du problème de Cauchy (dans Rd) pour (54) avec la condition

initiale a été démontrée. A partir de ce résultat, nous utilisons l’opérateur de prolonge-

ment impair Λ, afin de définir les solutions approchées ũ[n](t, x) de l’équation (54) avec des

conditions initiale et aux limite dans Rd
+. Nous considérons la discrétisation du temps

0 = t
[n]
0 < t

[n]
1 < · · · < t

[n]
k−1 < t

[n]
k < · · · , t

[n]
k = k2−n ≡ kδn

et le noyau de la chaleur relatif à l’intervalle de temps δn et au coefficient de diffusion κ > 0

Θn(x) =
1

(4πδnκ)
d
2

exp(− |x|2
4δnκ

), x ∈ Rd.

Nous introduisons aussi l’opérateur de prolongement impair

Λ(w(·))(r) =





w(r), si r > 0
0, si r = 0
−w(−r), si r < 0

.
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Soit u0(x) une fonction donnée sur Rd
+. On définit les solutions approchées ũ[n](t, x)

par

u[n](t
[n]
0 , x) = u0(x), x ∈ Rd

+,

u[n](t
[n]
k , x) =

=

∫

Rd

Θn(y)Λ(u[n](t
[n]
k−1, x

′ − δnv
′(t[n]

k , x)− y′, ·))(xd − δnvd(t
[n]
k , x)− yd)dy′dyd+

+δnf(t
[n]
k−1, x, u[n](t

[n]
k−1, x)), x ∈ Rd

+, k = 1, 2, · · · ,

u[n](t, x) =
t
[n]
k − t

δn

u[n](t
[n]
k−1, x) +

t− t
[n]
k−1

δn

u[n](t
[n]
k , x) pour t

[n]
k−1 ≤ t ≤ t

[n]
k , x ∈ Rd

+,

ũ[n](t, x) =

∫

Rd

Θn(y)Λ(u[n](t, x′ − y′, ·))(xd − yd)dy.

Mots clés: Équation de transport-diffusion, approximation par un noyau de chaleur.
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Abstract : Nowadays, one of the most topics of active mathematical research is inves-

tigations of the existence of global classical solutions for non linear evolution equations. In

this talk, we present a study of the Cauchy problem for a classical system of shallow water

equations which describes long surface waves in a fluid of variable depth. This system was

proposed in 1871 by Adhémar Jean-Claude Barré de Saint-Venant. Namely, we consider

the following initial value problem for the Saint-Venant equations:





∂tu + ∂x(uv) = 0, t ∈ (0,∞), x ∈ R,
∂t(uv) + ∂x

(
uv2 + 1

2
ku2

)
+ ku∂xf(t, x) = 0, t ∈ (0,∞), x ∈ R,

u(0, x) = u0(x), x ∈ R,
v(0, x) = v0(x), x ∈ R,

(55)

where k ∈ R+ represents the gravitational constant, the initial conditions u0, v0 and the

topography of the bottom f are given functions. Here the unknowns are u = u(t, x) and

v = v(t, x), which denote respectively the depth and the average horizontal velocity of the

fluid.
Here, we are especially interested in question of what conditions the initial data u0, v0

and the topography of the bottom f should be satisfy in order to ensure that Problem

(55) has classical global solutions. By a classical solution to the Saint-Venant equations

we mean a solution which is along with its derivatives that appear in the equations of class
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C([0,∞)×R). In other words, (u, v) belongs to the space C1([0,∞)×R)× C1([0,∞)×R)

of continuously differentiable functions on [0,∞)× R.

The main assumptions on the functions u0, v0, and f are the following :

(H1) u0, v0 ∈ C1(R), 0 ≤ u0, v0 ≤ B on R for some positive constant B.

(H2) f ∈ C([0,∞), C1(R)), 0 ≤ |∂xf | ≤ B on [0,∞)× R.

Our approach is based on the use of the fixed point theory for the sum of operators in

Banach spaces. Hereafter, the main steps to obtain our results. First, we will present a

new topological approach which uses fixed point abstract theory of the sum of two opera-

tors. Then, we give some properties of solutions of Problem (55). These properties will be

used to prove our main results concerning existence and multiplicity of solutions for the

Saint-Venant system (55). Finally, an example illustrating our main results will be given.

Keywords : Saint-Venant equations, classical solution, fixed point, initial value problem.
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Abstract: The main purpose of the present talk is to study the asymptotic behavior

(when ε → 0) of the solution related to a quasilinear hyperbolic-parabolic problem given

in a periodically perforated domain with two spatial and one temporal scales. Under certain

assumptions on the problem’s coefficients and based on a priori estimates and compactness

results, we establish homogenization results by using the multiscale convergence method.

We study here, the homogenization of the quasilinear hyperbolic-parabolic equations





αε(x)u
′′
ε + βε(x, t)u

′
ε −∆u′ε − div

(
a

(
x
ε1

, x
ε2

, t
ε′1

,∇uε

))
= f(x, t) in Ωε × (0, T ),

a
(

x
ε1

, x
ε2

, t
ε′1

,∇uε

)
.ν = 0, ∂νuε = 0 on ∂Sε × (0, T ),

uε = 0 on ∂Ω× (0, T ),

uε(x, 0) = hε(x), αε(x)u
′
ε(x, 0) =

√
αε(x)kε(x) for x ∈ Ωε.

(56)

where Ωε is a periodically perforated domain and

αε(x) = α(
x

ε1

,
x

ε2

), βε(x, t) = β(
x

ε1

,
x

ε2

,
t

ε′1
) and a

(
x

ε1

,
x

ε2

,
t

ε′1
, ξ

)
= σ(

x

ε1

,
x

ε2

,
t

ε′1
)|ξ|ρ−2ξ.

α, β, σ, hε and kε are functions which satisfy certain hypothesis. Here, Ω is a bounded open

subset of a space RN(N ≥ 2), T is a real positive number and 2 ≤ ρ < ∞. The set Ωε is a

domain perforated on two scales defined for example in figure 1. The main results of this

work are as follow:
Theorem 1. For any fixed real number ε and under certain assumptions on the problem’s

coefficients, there exist a unique solution u ∈ L∞(0, T ; V ρ
ε ) of the problem (56) and a

constant C such that

‖√αεu
′
ε‖2

Ωε
+

T∫

0

||u′ε||2Ωε
dt + ‖u′ε‖2

Vε
+ ‖uε‖2

V ρ
ε
≤ C

(||f ||2(0,T )×Ωε
+ ||kε||2Ωε

+ ||∇hε||2Ωε

)
.

Theorem 2. Let (uε)ε>0 be the sequence of solution to (56). Under certain assumptions

on the problem’s coefficients, there exist three functions (u0, u1, u2) ∈ Vρ such that, as
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Figure 1: The domain Ωε in the two-dimensional case

ε → 0, Pεuε converges weakly to u0 in Lρ(0, T ; W 1,ρ
0 (Ω)) and the triplet (u0, u1, u2) is the

unique solution of

(α̂u′′0, v0)L2(ΩT ) + (β̂u′0, v0)L2(ΩT ) +
1

|Y ∗ × Z∗|
∫

ΩT

∫

G

(
∂

∂t
Du

)
(Dv) dγdxdt

+
1

|Y ∗ × Z∗|
∫

ΩT

∫

G

b̃ (Du) (Dv) dγdxdt = (f, v0)L2(ΩT ), for all v = (v0, v1, v2) ∈ Vρ,

where b̃(ξ) =

(∫
G

σ̂dγ

)
|ξ|ρ−2ξ, Du = ∇u0 +∇yu1 +∇zu2, Dv = ∇v0 +∇yv1 +∇zv2,

G = Y×Z×T and Vρ = V ρ×Lρ(Ω×(0, T ); W 1,ρ
# (Y ∗))×Lρ(Ω×(0, T ); Lρ(Y×T ; W 1,ρ

# (Z∗))).

Keywords: Quasilinear hyperbolic-parabolic equations, Homogenization, Multiscale con-

vergence method.
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New Duffing Fractional Differential Oscillator of Sequential Type
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Abstract: In this talk, by introducing the fractional derivative in the sense of Caputo-

Hadamard and Hadamard integral operator, we study a nonlinear sequential fractional

problem of Duffing oscillator type. The contraction mapping principle and Schaefer fixed

point theorem are applied to prove the existence and the uniqueness of solutions, then

Ulam-Hyers and generalized Ulam-Hyers stabilities are analyzed. At the end, an illustrative

example is presented.

The present presentation deals with a more complicated problem of nonlinear fractional

differential of Duffing type. By injecting the derivatives of Caputo-Hadamard not only on

the left side of the equation, but on right hand side of the problem too, this consideration

makes the considered problem more interesting, this is in one hand. On the other hand,

the motivation of the present paper can be seen also in the fact that Caputo-Hadamard

approach has many advantages with respect to the usual Hadamard approach. So let us

consider the following problem:





Dβ(Dαx(t)) + k f(t,Dαx(t)) + g(t, x(t), Dpx(t)) = h(t).

x(0) = A∗ ∈ R, Dαx(0) = B∗ ∈ R, x(e) = C∗ ∈ R,

0 < p < α < 1, 1 < β < 2, t ∈ I,

where Dα, Dβ, Dp are the Caputo-Hadamard fractional derivatives, I = [0, e], k is a real

constant, the functions f, g and h are continuous.

More precisely, we will recall some preliminary related to fractional calculus concepts for our

problem, and by proving two main theorems, we apply the fixed point theory to study the

questions of existence and uniqueness of solutions for the considered problem. Then, other

results around stability in the sense of Ulam-Hyers and generalized Ulam-Hyers stability

will be analyzed. At the end, we will present an example to validate the theoretical results.

Keywords: Duffing differential equation, Fixed point, Uniqueness, Ulam-Hyers stabil-

ity.
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This work is in collaboration with Prof. S. Hamani and Prof. J. Henderson.

Abstract : In this paper, we studied the existence and uniqueness of solutions for a

class of boundary value problems for fractional equations involving the Caputo fractional q-

difference derivative of order 0 < α ≤ 1. Ours results are given by applying some standard

fixed point theorems.

This communication deals with the existence of solutions for the boundary value problem

for fractional q-difference equations of the form

(CDα
q y)(t) = f(t, y(t)), for a.e. t ∈ J = [0, T ], 0 < α ≤ 1, (57)

ay(0) + by(T ) = c, (58)

where T > 0, q ∈ (0, 1), CDα
q is the Caputo fractional q-difference derivative of order

0 < α ≤ 1, f : [0, T ] × R → R is a given function and a, b and c are real constants such

that a + b 6= 0.

We give two existence results, one based on the Banach fixed point theorem, another based

on Schaefer’s fixed point theorem. Finally, we present an example.

Keywords : Fractional q-difference equations; Caputo fractional q-difference derivative;

existence; fixed point.
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Abstract: It has been observed that most of the biological models have memory or what

we call after effects, such effects in the systems are often neglected. For this reason, the

researchers considered the fractional derivative to play a significant role in recognizing and

understanding these effects on the real life models dynamics. It should be noted that

the fractional order dynamical systems are gaining popularity due to its various applica-

tions. As it is well known, many mathematical, engineering, biological, chemical, physical

models can be described more accurately by fractional derivatives than traditional order

derivatives. In this talk, we introduce a new model of glycolysis phenomenon involving the

Caputo time fractional derivative, which is a generalization of the classical model given by

Selkov in 1968.
The Selkov model has attracted the interest of many researchers, since it is a simple de-

scription for glycolysis which is a complex process by which energy is extracted from sugar.

It has been observed that under suitable circumstances the rate at which products of gly-

colysis accumulate shows oscillations in time although the input rate of sugar to the system

is constant.
We start by deriving sufficient conditions for the local asymptotic stability of the equilib-

rium point of the proposed system using the theorem of ’Matignon’. Then, we pass to the

analysis of the Hopf bifurcation existence that permits us to prove the existence of a limit

cycle, hence the oscillating behaviour of Selkov fractional model. Finally, We present some

numerical simulations to show the advantages of using a fractional order derivative on the

dynamics of the system and to validate our main findings.

The expansion of the stability region is what distinguishes the generalization of the prob-

lem to the fractional, this has been shown clearly in this presentation, and we validated it

with numerical simulations.
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Abstract: In this talk, we study the existence and uniqueness for a class of implicit

integro-differential equation involving ψ-Caputo fractional derivative of the form

{
CDα,ψ

0+ x(t) = f
(
t, x(t),C Dα,ψ

0+ x(t), Iα,ψ
0+ x(t)

)
, t ∈ J

x(0) = x0,
(1)

where CDα,ψ
0+ is ψ-Caputo fractional derivative of order 1

2
< α < 1, and Iα,ψ

0+ is the ψ-

Riemann-Liouville fractional integrals of orders α; f : J × R3 → R is a given continuous

function, and J = [0, T ], T > 0. The state x(.) take value in Banach space X.

(H1) There exist constants L1, L3 > 0, and 0 < L2 < 1 such that

|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ L1|x1 − x2|+ L2|y1 − y2|+ L3|z1 − z2|,
for any xi, yi, zi ∈ R, i = 1, 2 and t ∈ J .

(H2) is a consequence of (H1).

(H2) There exist non negative continuous functions h1, h2, h3, h4 ∈ R such that

|f(t, x, y, z)| ≤ h1(t) + h2|x|+ h3|y|+ h4|z|. x, y, z ∈ R, t ∈ J,

with h∗1 = sup
t∈J

h1(t), h∗2 = sup
t∈J

h2(t), h∗3 = sup
t∈J

h3(t), h∗4 = sup
t∈J

h4(t).

(H3) f(t, x, y, z) ≤ q(t) = f (t, 0, 0, 0), (t, x, y, z) ∈ J × R3 where q(t) ∈
C(J,R+).

For computational convenience, we use the following notations:

Ψ(v, λ) =
(ψ(λ)− ψ(0))γ+v−1

Γ(γ + v)

105



RDOPDE 2022: Fractional Differential Equations

Λ1(v, λ) = Γ(v)

[
L1Ψ(v, λ) + L2KK ′Ψ(v − 1, λ) + L3KΨ(v − 1, λ)

]

Theorem 1 Let f : J ×R3 → R be a continuous function satisfying (H1). If

Θ1 = 1 + (ψ(T )− ψ(0))1−γΛ1(α, T ) < 1,

then problem (1) has a unique solution x ∈ C1−γ,ψ on J .

Theorem 2 Let f : J × R3 → R be a continuous function satisfying (H2). Then problem

(1) has at least one solution on J .

Keywords: ψ-Caputo fractional derivative; Fractional evolution equation; Existence;

Uniqueness.
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Existence and uniqueness of solutions of a terminal value

problem for fractional-order differential equations with advanced
arguments
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Abstract: In this talk, we study of the existence and uniqueness of solutions for the

following terminal value problem

{
CDα

−u (x) = f (x, u (x) , u (θ(x))) , x ∈ [1, +∞) ,
lim

x→+∞
u (x) = a, (59)

where CDα
− is the modified fractional Caputo derivative of order α with 0 < α < 1,

f : [1, +∞)× R2 → R and θ : [1, +∞) → [1, +∞) are continuous and a ∈ R.

Definition 1. ([2]). Let g : [1, +∞) → R be a function. For α > 0 the modified Liouville

fractional Integral of order α of g is defined by

Jα
−g (x) =

1

Γ (α)

+∞∫

x

(xt)1−α g (t)

t2 (t− x)1−α dt, for all x ∈ [1, +∞) .

Definition 2. ([2]). Let g : [1, +∞) → R be a function. For 0 < α < 1 the modified

Liouville fractional derivative of order α of g is defined by

Dα
−g (x) = −x2 d

dx
J1−α
− g (x)

= − x2

Γ(1−α)

d

dx

+∞∫
x

(xt)α g (t)

t2 (t− x)α dt, for all x ∈ [1, +∞) .

We note C (1; +∞) the following space

C (1; +∞) =

{
u ∈ C ([1, +∞) ,R) , lim

x→+∞
u (x) = a

}
.
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Definition 3. Let g : [1, +∞) → R be a function such that g ∈ C (1; +∞) with lim
x→+∞

g (x) =

b. For 0 < α < 1 the modified Caputo fractional derivative of order α of g is defined by

CDα
−g (x) = −J1−α

− (b− g (x))

= − x2

Γ(1−α)

d

dx

+∞∫
x

(xt)α (b− g (t))

t2 (t− x)α dt, for all x ∈ [1, +∞) .

Also, we have the following definition

Definition 4. Let g : [1, +∞) → R be a function. For 0 < α < 1 the modified Caputo

fractional derivative of order α of g is defined by

CDα
−g (x) = −J1−α

− (x2g′ (x))

= − 1
Γ(1−α)

+∞∫
x

(xt)α g′ (t)
(t− x)α dt, for all x ∈ [1, +∞) .

Definition 5. We say that u is a solution for the problem (59) if u ∈ C (1; +∞), CDα
−u ∈

C ([1, +∞) , R) and u satisfies (59).

Theorem 1. Assume that the following hypothesis is satisfied

There exist L1 > 0 and L2 > 0 such that

|f (x, u1, v1)− f (x, u2, v2)| ≤ L1 |u1 − u2|+ L2 |v1 − v2| ,
for all x ∈ [1, +∞) and ui, vi ∈ R for i = 1, 2.

Then the terminal value problem (59) admits a unique solution.

Keywords: Modified fractional Liouville integral; modified fractional Caputo deriva-

tive; terminal value problem; advanced arguments; Banach’s fixed point theorem.
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Abstract: The objective of this topic is to present the existence of positive solutions for

a fractional order boundary value problem of the fractional differential equation with a

homogeneous fractional integral boundary condition at the left end and a non-local frac-

tional integral boundary condition at the right end.It is a subject of fractional differential

equations which is one of the topics of the RDOPDE 22 conference. This problem is as

follows:
{

Dα
0+u(t) + ϕ(t)f(t, u(t)) = 0, t > 0,

I2−α
0+ u(0) = 0, lim

t→+∞
Dα−1

0+ u(t) = γIβ
0+u(η), (60)

where 1 < α ≤ 2 and β, γ, η > 0. The function f : [0, +∞) × [0, +∞) → [0, +∞) is

continuous and ϕ : [0, +∞) → [0, +∞) is continuous, not identically zero on any closed

subinterval of [0, +∞), and ϕ ∈ L1[0, +∞).

First, we study the corresponding Green’s function associated with problem (60) and

describe some of its properties. Second, we demonstrate some technical lemmas that will

be needed later. Finally we discussed our main result of existence of positive solutions. It

is based on the fixed point theorem of Avery-Henderson [1].

The following conditions for obtaining positive solutions have been determined:

(H1) 0 < γηα+β−1 < Γ(α + β).

(H2) f(t, (1 + tα−1)u) < ma, pour t ∈ [0, +∞), u ≤ a avec

m =
Γ(α)(Γ(α + β)− γηα+β−1)

Γ(α + β)
∫ +∞

0
ϕ(s)ds

.

(H3) f(t, (1 + tα−1)u) > b
m′ , pour t ∈ [ 1

k
, k], b ≤ u ≤ Mb avec

m′ =
λ(k)

∫ k
1
k

ϕ(s)ds

Γ(α)kα−1
.
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(H4) f(t, (1 + tα−1)u) ≤ mr, pour t ∈ [0, +∞), u ≤ r.

(H5) f(t, (1 + tα−1)u) > r
m′ , pour t ∈ [ 1

k
, k], r ≤ u ≤ Mr.

(H6) f(t, (1 + tα−1)u) < bm, pour t ∈ [0, +∞), b ≤ u ≤ Mb.

(H7) f(t, (1 + tα−1)u) > a
m′ , pour t ∈ [ 1

k
, k], a

M
≤ u ≤ a.

Keywords: Boundary value problem; fractional differential equation; positive solution;

infinite interval; nonlocal conditions; fixed point theorem.
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Abstract: In this talk, we study the existence, uniqueness and monotonicity of positive

solutions for hybrid nonlinear fractional integro-differential equations by the method of

upper and lower solutions and using Dhage and Banach fixed point theorems.

Fractional differential equations have been of great interest recently. It is caused both

by the intensive development of the theory of fractional calculus itself and by the applica-

tions. Particularly, the existence of positive solution of fractional differential equations is

considered in depth in the last years. Although the tools of fractional calculus have been

available and applicable to various fields of study ( science, engineering,physics, chemistry,

biology, medicine, atomic...). Hybrid differential equations arise from a variety of different

areas of applied mathematics and physics, e.g., in the detection of a curved beam having

a constant or varying cross section, a three-layer beam, electromagnetic waves or grav-

ity driven flows and so on. Dhage and Lakshmikantham in [1] discussed the existence of

solutions for the following first order hybrid differential equation





d

dt

(
x (t)

g (t, x (t))

)
= f (t, x (t)) a.e. t ∈ [t0, t0 + T ] ,

x (t0) = x0 ∈ R.

where t0, T ∈ R with T > 0, g : [t0, t0 + T ]×R→ R� {0} and f : [t0, t0 + T ]×R→ R are

continuous functions. By using the fixed point theorem in Banach algebra, the authors

obtained the existence results.
Let J = [0, a] be a closed and bounded interval of the real line R for some a ∈ R with

a > 0. The hybrid fractional differential equations





Dα

(
x (t)

g (t, x (t))

)
= f (t, x (t)) a.e. t ∈ J,

x (0) = 0.
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has been investigated in [4] where Dα is the Riemann-Liouville fractional derivative of

order 0 < α < 1, f : J × R → R, and g : J× R → R� {0} , are continuous functions. By

employing the fixed point theorem in Banach algebra the authors obtained the existence

of a solution.
Let J = [t0, T ]. Matar[2] investigated the existence, uniqueness and monotonicity of

positive solutions for the following hybrid fractional differential equation





CDα
t0

(
x (t)

g (t, x (t))

)
= f (t, x (t)) , t ∈ J,

x (t0) = θ ≥ 0,

where CDα
t0

is the Caputo fractional derivative of order 0 < α ≤ 1, f : J × R → R and

g : J × R → R� {0} are given continuous functions such that g (t0, x (t0)) = λ > 0.

By using the method of the upper and lower solution and the Dhage and Banach fixed

point theorems, the authors obtained the existence, uniqueness and monotonicity of a

positive solution. Inspired and motivated by the works mentioned above and some recent

studies on hybrid fractional differential equations, we consider the existense, uniqueness

and monotonicity of positive solutions for the following hybrid nonlinear fractional integro-

differential equation





CDα
t0

(
x (t)

p (t) + 1
Γ(β)

∫ t

t0
(t− s)β−1 g (s, x (s)) ds

)
= f (t, x (t)) , t ∈ J,

x (t0) = p (t0) θ ≥ 0,

(61)

where 0 < α, β ≤ 1, f, g : J × R → R,and p : J → R,are given continuous functions. To

show the existence, uniqueness and monotonicity of positive solution, we transform (61)

into an integral equation and then by the method of upper and lower solutions and use

Dhage and Banach fixed point theorems.

Keywords: Fractional integro-differential equation, Fixed point theorems, Existence

and uniqueness, Positivity, Monotonicity.
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sequential Riemann-Liouville-Caputo fractional Duffing problem
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Abstract: Differential equations with fractional derivative operators have attracted great

attention in the last years, these fractional differential equations arise in the modelling of

various problems in sciences and engineering [4]. Recently, several authors have studied the

existence, uniqueness and different types of Mittag-Leffler-Ulam-stability of solutions for

differential equations of fractional order [1,3]. In recent years, many scholars have exposed

attention in the field of theory of nonlinear fractional differential equations. One of the

very important nonlinear differential equations is the Duffing equation [2]. In this present

talk, we discuss the existence, uniqueness and Mittag-Leffler-Ulam-stability of solutions

for sequential Riemann-Liouville-Caputo fractional Duffing equation





R.LDα
[
CDβ [CDγs (t)]

]
= k (t)−Mg

(
t, s (t) ,C Dδs (t)

)− h (t, s (t) , Iηs (t)) ,
s (0) = 0, CDβ [CDγs (1)] = 0, s (1) = A, A ∈ R,

t ∈ J := [0, 1] , 0 < α, β, γ ≤ 1, δ < γ, M > 0, η > 0,
(62)

where R.LDα,C Dµ, µ ∈ {β, γ} , denote the Riemann-Liouville and Caputo fractional deriva-

tives, g, h : J × R2 → R and k : J → R are given continuous functions. The op-

erator R.LDα is the fractional derivative in the sense of Riemann-Liouville, defined by

R.LDαs (t) = dn

dtn
(In−α [s (t)]) , n = [α] + 1. The operator CDα is the fractional derivative

in the sense of Caputo, defined by CDµs (t) = In−α
[

dn

dtn
(s (t))

]
and the Riemann-Liouville

fractional integral of order α > 0, defined by Iηs (t) = 1
Γ(η)

∫ t

0
(t− r)η−1 s (r) dr, t > 0.

Let W =
{
s : s ∈ C (J,R) and CDδs ∈ C (J,R)

}
denotes the space equipped with the

norm ‖s‖W = ‖s‖ +
∥∥

CDδs
∥∥ , where ‖s‖ = supt∈J |s (t)| and

∥∥
CDδs

∥∥ = supt∈J

∣∣
CDδs (t)

∣∣ .

It is clear that (W, ‖.‖W ) is a Banach space.

Lemma 2. Lemma: Suppose that m ∈ C ([0, 1] ,R). Then, the fractional problem

{
R.LDα

[
CDβ [CDγs (t)]

]
= m (t) , 0 < α, β, γ < 1, t ∈ J,

s (0) = 0, CDβ [CDγs (1)] = 0, s (1) = A, A ∈ R,
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admits the following solution:

s (t) = 1
Γ(α+β+γ)

∫ t

0

(t− r)α+β+γ−1 m (r) dr + tγ−tα+β+γ−1

Γ(α+β+γ)

∫ 1

0

(1− r)α−1 m (r) dr

− tγ

Γ(α+β+γ)

∫ 1

0

(1− r)α+β+γ−1 m (r) dr + tγB.

By using Banach’s fixed point theorem, we will establish find a unique solution of the

fractional Duffing problem (1).

Theorem 3. Theorem 1: Let g, h : J × R2 → R and k : J → R be continuous functions.

In addition we assume that:
(H1) : There exist a constant ω > 0, $ > 0 such that for all t ∈ J and sl, zl ∈ R, l = 1, 2,

|ϕ (t, s1, s2)− ϕ (t, z1, z2)| ≤ ω1 (|s1 − z1|+ |s2 − z2|) ,

|ψ (t, s1, s2)− ψ (t, z1, z2)| ≤ $ (|s1 − z1|+ |s2 − z2|) .

If Mω+$
(
1 + 1

Γ(η+1)

)
< 1

∇+∇∗ , where ∇ := 2
Γ(α+β+γ+1)

+ 2
αΓ(α+β+γ)

and ∇∗ := 1
Γ(α+β+γ−δ+1)

+

1
αΓ(α+β+γ−δ)

+ Γ(γ+1)
Γ(γ−δ+1)

(
1

αΓ(α+β+γ)
+ 1

Γ(α+β+γ+1)

)
. Then the fractional Duffing problem (1)

has a unique solution on J .

Now, we present the Mittag-Leffler-Ulam-Hyers stability for the fractional Duffing prob-

lem (1).

Definition 6. Definition: The fractional Duffing problem (1) is Mittag-Leffler-Ulam-Hyers

stable, with respect to Eα+β+γ if there exists a real number π such that for each ρ > 0 and

for each solution y ∈ W of the inequality
∣∣
R.LDα

[
CDβ [CDγs (t)]

]−m (t)
∣∣ ≤ ρ, t ∈ J , there

exists a solution s ∈ W of the problem (1) with ‖y (t)− s (t)‖W ≤ πρEα+β+γ [t] , t ∈ J.

Theorem 4. Theorem 2: Assume that g, h : J × R2 → R, k : J → R are continuous

functions and suppose that (H1) holds. Then the fractional Duffing problem (1) is Mittag-

Leffler-Ulam-Hyers stable.

Keywords: Fractional derivative, fixed point, existence, Duffing equation, Mittag-

Leffler-Ulam stability.
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differential equation using Krasnoselskii’s - Burton fixed point
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Abstract:
In this talk, we use a modification of Krasnoselskii’s fixed point theorem introduced

by Burton (see [6] Theorem3) to establish new results on the existence and positivity of

solutions for the totally nonlinear neutral periodic differential equation. We invert the

equation to construct a sum of a completely continuous map and a large contraction which

is suitable for the application of a modification of Krasnoselskii’s theorem.
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Abstract: In this talk we deal with the existence of mild solutions for non-linear fractional
integro-differential equations with state-dependent nonlocal condition of the form

y′(t)−
∫ t

0

(t− s)α−2

Γ(α− 1)
Ay(s)ds = f(t, yρ(t,yt)), a.e. t ∈ IR+ := [0, +∞), (63)

y0 = G(σ(y), y) ∈ C = C([−r, 0], E), (64)

where 1 < α < 2 and A : D(A) ⊂ E → E is a closed linear operator, and (E, ‖ · ‖) is a

Banach space.f : IR+ ×C → E, σ : C([−r, +∞), E) → IR+, G : IR+ ×C([−r, +∞), E) →
E and ρ : IR+ × C → IR, are suitable functions. For any continuous function y defined

on [−r, +∞) and any t ∈ [0, +∞), the technique used is a generalization of the classical

Darbo fixed point theorem for Fréchet spaces associated with the concept of measures of
noncompactness.

To prove our main result we need the following hypotheses

(H1) There exists a constant M > 1 such that

‖S(t)‖B(E) ≤ M for every t ∈ IR+.

(H2) The function t 7−→ f(t, y) is measurable on IR+ for each y ∈ E, and the function

y 7−→ f(t, y) is continuous on E for a.e t ∈ IR+

(H3) There exists a function p ∈ L1(IR+; IR+) and a continuous nondecreasing function

ψ : R+ → [0,∞) such that

‖f(t, y)‖ ≤ p(t) ψ(‖y‖) for a.e. t ∈ IR+ and each y ∈ C,
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(H4) For each bounded and measurable set B ⊂ E and for each t ∈ IR+, we have

µ(f(t, B)) ≤ p(t)µ(B).

(H5) There exists L > 0 such that

‖G(σ(y), y)‖ ≤ L(1 + ‖y‖) for each y ∈ C

(H6) There exists K > 0 such that

µ(G(σ(y)), B) ≤ Kµ(B),

where µ is a measure of noncompactness on the Banach space E,

(H7) For each n ∈ IN, there exists Rn a positive real number such that

ML(1 + Rn) + nMψ(Rn)p∗n ≤ Rn.

For n ∈ IN, let

p∗n = sup
t∈[0,n]

p(t)

and define on C(IR+) the family of measure of noncompactness by

µn(D) = sup
t∈[0,n]

µ(D(t));

and D(t) = {v(t) ∈ E; v ∈ D}; t ∈ [0, n]

Theorem 5. Assume (H1)− (H7) are satisfied, and

4Mp∗n
1− 2MK

< 1

for each n ∈ IN. Then the problem (66)− (64) has at least one mild solution.

Keywords: Integro-differential Equations, solution operator, mild solution, fixed point,

state-dependent nonlocal condition, measure of noncompactness.
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On Caputo fractional differential equation with an evolution

problem by the subdifferential operator
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Abstract: In recent years, fractional differential equations and differential inclusions have

proved to be crucial tools in modeling many physical and economical phenomena. Actually,

there has been a significant development in fractional differential theory and its applica-

tions. In the case of systems involving the Caputo fractional derivative, an important piece

of literature can be found.
In the current contribution, we are interested in a system coupled by a differential inclu-

sion governed by the time-dependent subdifferential operator and a fractional differential

equation (in a real Hilbert space H) formulated by

−u̇(t) ∈ ∂ϕ(t, u(t)) + f(t, x(t)) + F (t, u(t)) a.e. t ∈ [0, T ]

cDαx(t) = u(t), t ∈ [0, T ]

u(0) = u0 ∈ domϕ(0, ·)
x(0) = x0 ∈ H,

where cDαx denotes the Caputo fractional derivative of order α > 0 of the function x. The

real-valued map ϕ(t, ·) from H into [0, +∞] is proper, lower semi-continuous, convex, and

satisfies an assumption expressed in term of its conjugate function ϕ∗(t, ·).
We denote by ∂ϕ(t, ·) the subdifferential of ϕ(t, ·) and by domϕ(t, ·) its domain, for each

t ∈ [0, T ]. The single-valued perturbation f : [0, T ] × H → H is a Carathéodory map

satisfying a suitable growth condition, while the set-valued map F : [0, T ]×H ⇒ H takes

non-empty convex weakly compact values.

In our development, we combine the existence result for differential inclusions involving

time-dependent subdifferential operators, an important lemma in fractional differential

theory, and the fixed point theorem. From our main result, we deduce the related study

for systems coupled by the sweeping process.

There remain several coupled systems by the evolution problems governed by subdif-

ferential operators with fractional differential equations to be investigated in the line of

recent works cited in references.
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Keywords: Coupled system, differential inclusion, subdifferential operator, Caputo

fractional derivative.
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Existence and uniqueness results for SICA model with fractional
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Abstract: The purpose of this talk is to present existence and uniqueness for the epidemic

model SICA (Susceptible-Infectious- Chronic-AIDS) for HIV/AIDS transmission dynamic

with varying population size in a homogeneously mixing population, given by a system of

four ordinary differential equations. We consider SICA models given by system with frac-

tional order derivative in Caputo sense. We concern the required results by applying some

basic theorems to prove the existence of the solution via fixed point theory and further to

examine the uniqueness of the model variables.

In this work, we consider a SICA (Susceptible-Infectious-Chronic-AIDS) mathematical

model for transmission dynamic of the human immunodeficiency virus HIV/AIDS with

varying population size in a homogeneously mixing population which spreading continu-

ously all over the world and there have been few generator which continue it, given by a

system of four differential equations. Different scholars have treated this model in different
cases.

In the present work, we have to study the following model with non-integer order of

derivative with 0 < α ≤ 1 which is given by





C
t0
Dα

t w(t) = Λ− β(x(t) + ηyy(t) + ηzz(t))w(t)− µw(t),
C
t0
Dα

t x(t) = β(x(t) + ηyy(t) + ηzz(t))w(t)− ξ3x(t) + ωy(t) + γz(t),
C
t0
Dα

t y(t) = γx(t)− ξ2y(t),
C
t0
Dα

t z(t) = γx(t)− ξ1z(t)

where Λ, β, ηy, ηz, µ, ω, γ, ξ1, ξ2, ξ3 are non-negative and the total population N(t) =

w(t) + x(t) + y(t) + z(t) at time t ≥ 0. The corresponding derivative is taken in Caputo

sense. Furthermore for the corresponding results, existence theory and uniqueness of solu-
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tion are supplied by using fixed point theory.

With the help of Banach and Schauder theorems, we have investigated HIV/AIDS

model with fractional derivatives.
Keywords: SICA model;HIV/AIDS ;Fractional derivative; existence and uniqueness;

fixed point theory .
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Spherical caps conjecture in Minkowski space
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Abstract:

Given Mn+1 an oriented Riemannian manifold, and Mn a compact oriented hypersur-

face embedded in Mn+1. Denoting by x1, ...., xn its principal curvatures.

For 1 ≤ k ≤ n− 1, we define the higher order mean curvature Hk of Mn, as :

(
n

k

)
Hk =

∑
i1≺...≺ik

xi1 ...xik , 1 ≤ k ≤ n

For instance, H1 = H and Hn are respectively the mean and Gauss curvatures of the

hypersurface.

The Alexandrov’s spherical caps conjecture [1] states that the only compact hyersurface

embedded in Rn+1 with constant higher order mean curvature Hr and spherical boundary

are the hyperplanar disc ( if Hr = 0) and the spherical caps ( if Hr 6= 0) .

In [3], the authors generalized the above result for hypersurfaces embedded in an ori-

ented Riemannian manifold.
Notice that this theorem is not true if the hypersurfaces is immersed and not embedded.

In this talk, we give a partial answer of the Alexandrov spherical caps conjecture for

hypersurfaces embedded in the Minkowski space. We prove that under sufficient conditions

a compact oriented hypersurface with constant higher order mean curvature and spherical

boundary embedded in the Minkonski space must be a part of the pseudo sphere.

For the prove we use the moving plane method (Alexandrov reflexion method).

We give in the end some examples and open problems.

Keywords: Newton transformations, Higher order mean curvature, Pseudo Riemanian

manifolds.
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General decay for a viscoelastic translational Timoshenko system
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Abstract: In this talk, we study the existence and asymptotic behaviour of solutions for

a a cantilevered Timoshenko beam. The beam is viscoelastic and subject to a transla-

tional displacement. The problem can be modeled by a set of partial differential equations

(PDEs) taking into account therefore the dynamic boundary condition. Based on the stan-

dard Faedo-Galerkin method, we prove the well-posedness of our problem, then, under a

suitable boundary control, we prove an arbitrary decay of the energy of the system for a

large class of relaxation functions using the multiplier method.

The aim of this talk is to study the uniform stability of a Timoshenko beam with memory.

One end of the beam is fixed to a base in a translational motion while a tip mass is attached

at its free end. The dynamic of the problem can be described by the following system





mξtt(t) + ρ1

∫ L

0

(
ξtt(t) + wtt(x, t)

)
dx + mE

(
ξtt(t) + wtt(L, t)

)
= Φ(t), t ∈ R+,

ρ1

(
ξtt(t) + wtt(x, t)

)− k
(
wxx(x, t) + Θx(x, t)

)
= 0,

ρ2Θtt(x, t)− bΘxx(x, t) +

∫ t

0

q(t− τ)Θxx(τ)dτ + k
(
wx(x, t) + Θ(x, t)

)
= 0,

for all 0 ≤ x ≤ L, t ∈ R+, with the boundary conditions





w(0, t) = Θ(0, t) = 0, t ∈ R+,
−k

(
wx(L, t) + Θ(L, t)

)
= mE

(
wtt(L, t) + ξtt(t)

)
, t ∈ R+,

bΘx(L, t)−
∫ t

0

q(t− τ)Θx(L, τ)dτ = −JΘtt(L, t), t ∈ R+

and the initial data

{
ξ(0) = ξ0, ξt(0) = ξ1, w(x, 0) = w0(x), Θ(x, 0) = Θ0(x),
wt(x, 0) = w1(x), Θt(x, 0) = Θ1(x), 0 ≤ x ≤ L,

where t denotes the times variable and x is the space variable along the beam of length L, ξ

is the displacement of the translational base, w is the beam transversal displacement and Θ
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is the rotational angle of the beam. The constants ρ1, ρ2, b and k are the mass density, the

moment mass inertia, the rigidity coefficient (of the cross-section) and the shear modulus

of elasticity, respectively. The coefficients m and mE denotes respectively, the mass of the

translational base and the mass attached at the free end of the beam with rotational J .
The convolution term in the third Eq. of first system represents the viscoelastic damping

or the dependence on the history and the kernel q involved there is the relaxation function.

Now, our result reads as follows.

Theorem 6. Under the control force Φ(t) applied at the base motion. Then, there exist

positive constants Λ and % such that

E(t) ≤ Λψ−%(t), t ≥ 0

if lim
t−→+∞

δ(t) = 0 and

E(t) ≤ Λe−%t, t ≥ 0

if lim
t−→+∞

δ(t) 6= 0.

Keywords: Timoshenko beam; well-posedness; Faedo-Galerkin method; general decay;

relaxation function; viscoelasticity.
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Abstract: The Covid-19 epidemic was alerted by WHO in December 2019, and was

declared a public health emergency of international concern (USPPI) by the same organi-

zation on January 30, 2020. As of October 17, 2021, more than 241 million cases had been

confirmed and nearly 5 million deaths worldwide.

The global spread is very rapid, with 170 countries now reporting at least one case. It is

very important to understand the dynamics of the epidemic’s transmission early in order

to better control its evolution and assess the effectiveness of control measures .
Many studies have established that several factors have a surprising correlation with

higher mortality in individuals with Covid-19: arterial hypertension and smoking, obesity,

diabetes, cardiac and pulmonary pathology. Over the past two years, many mathematical

modeling studies of covid-19 associated with other chronic diseases have emerged, among

these works.
In this talk, we propose a mathematical model that highlight the very negative effect

of the COVID-19 pandemic on overweight and obese people.

This model takes into account different disease states and is represented mathemati-

cally by a nonlinear temporal system of ordinary differential equations It is divided into ten

compartmental classes, namely susceptible non-obese class S (t), exposed non-obese class

E (t), asymptomatic COVID-19 infected class Ia (t), symptomatic COVID-19 infected class

Is (t), the hospitalized infected class Ih (t), obese class O (t), exposed obese class EO (t),

the class of obese was hospitalized with a COVID-19 infection IOh (t), recovered class R (t)

and death class D (t).

It was found that the proposed model has two equilibrium points; the disease-free

equilibrium point (DFE) and the endemic equilibrium point (E1). Stability analysis of

the equilibrium points shows (E0) is locally asymptotically stable whenever the basic re-

production number,R0 < 1 and (E1) is locally asymptotically stable whenever R0 > 1.

Numerical simulations are presented to explain the usefulness of the proposed model and

confirm numerically the theoretical results gained above.

Keywords: Obesity, Covid-19, Model Validation, Stability Analysis.
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viscoplastic materials

Chouia Abdallah (1),Azeb Ahmed Abdelaziz (2)

(1) Mathematics Department, Hamma Lakhdar University of El Oued, Algeria

E-mail: chouia-abdallah@univ-eloued.dz

(2) Mathematics Department, Hamma Lakhdar University of El Oued, Algeria

E-mail: aziz-azebahmed@univ-eloued.dz

Abstract: We consider a quasistatic contact problem for an elastic-viscoplastic body with

wear and damage between a elastic-viscoplastic body and a rigid obstacle. The contact is

frictional and bilateral which results in the wear and damage of contacting surface. The

evolution of the wear function is described with Archard’s law.The evolution of the damage

is described by an inclusion of parabolic type. We establish a variational formulation for

the model and we prove the existence of a unique weak solution to the problem. The proof

is based on a classical existence and uniqueness result on parabolic inequalities, differential

equations and fixed point argument.

Keywords: quasistatic process, elastic viscoplastic materials, bilateral contact, fric-

tion and damage, existence and uniqueness, fixed point and weak solution
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Abstract: In this talk, we study a mathematical problem for dynamic contact between

two piezoelectric bodies with normal compliance, adhesion and damage. The damage of

the material caused by elastic deformations. The evolution of the damage is described by

an inclusion of parabolic type. The evolution of the bonding field is described by a first

order differential equation. We derive variational formulation for the model and prove an

existence and uniqueness result of the weak solution. The proof is based on arguments

of time dependent variational inequalities, parabolic inequalities and Banach fixed point

theorem.
Keywords: Dynamic process, thermo-piezoelectric materials, normal compliance, fixed

point, damage field, adhesion field.
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integro-differential equations with nonlocal conditions
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Abstract: In this talk we discuss the existence of mild solutions of non-instantaneous
stochastic impulsive integro-differential equations with nonlocal conditions. The results

are obtained by using Kuratowskii measure of noncompactness, resolvent operator and a

generalized Darbo’s fixed point theorem. An example is also given to illustrate the ob-

tained results.

Keywords: Measure of noncompactness; stochastic integro-differential equations; non-

instantaneous impulses; resolvent operator; fixed point theory.
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Abstract: Let H be a complex Hilbert space and B(H) the algebra of all bounded linear

operators on H. An operator T ∈ B(H) is said to be normal if TT ∗ = T ∗T , quasinormal if

T commutes with T ∗T and binormal if TT ∗ and T ∗T commute. the class of binormal oper-

ators was introduced by Campbell in 1972. It is easy to see that normal =⇒ quasinormal

=⇒ binormal and the inverse implications do not hold. It is well known that for every oper-

ator T ∈ B(H), there is a unique factorization T = U |T |, where N (U) = N (T ) = N (|T |),
U is a partial isometry, i.e. UU∗U = U and |T | = (T ∗T )

1
2 is the modulus of T. This

factorization is called the polar decomposition of T . Related to this decomposition, the

Aluthge transform of T ∈ B(H) is defined as

∆(T ) = |T | 12 U |T | 12 .

This transform was introduced in [1] by Aluthge, during the investigating on the properties

of p-hyponormal operators. More generally, for λ ∈ [0, 1], Okubo defined the λ-Aluthge

transform of T in [5], by

∆λ(T ) = |T |λU |T |1−λ.

Notice that ∆0(T ) = T and ∆1(T ) = |T |U is known as is known as Duggal’s transform.

These transforms have been studied in many different contexts and considered by a number

of authors. One of the interests of the Aluthge transform lies in the fact that it respects

many properties of the original operator. Throughout the remainder of this paper, we

denote by δ(H) the class of operator T ∈ B(H) which satisfies U2|T | = |T |U2. Clearly,

quasinormal operators belong to δ(H) but the converse is not true in genaral. In this

paper, firstly, we provide a condition under which an operator in δ(H) becomes quasinor-

mal. Secondly, we show that an invertible operator T belongs to the class δ(H) if and

only if ∆1(T
−1) = (∆1(T ))−1. Afterwards, we give examples and discuss how this class of

operators is distinct from the class of binormal operators. Finally, We prove that, if T is

invertible in δ(H), then T is binormal if and only if ∆λ(T
−1) = (∆λ(T ))−1, for λ ∈]0, 1[.
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Also, in this paper, we will investigate on some relations between the class of binormal

operators and other usual classes of operators via λ-Aluthge Transform .

Keywords: Hilbert space , Binormal operator, Invertible operator, quasinormal, λ-

Aluthge Transform .
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dimensional space
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Abstract: The aim of this talk is to obtain an exact solution of spinless particles with

relativistic energy subjected to the action of a scalar potential and a vector potential within

the fractional- dimensional space, where the momentum and position operators satisfies

the Heisenberg algebras of R-deformed model. Therefore, a number of problems have been

solved, and in every instance, the wavefunction are expressed in terms of the special func-

tions, and the corresponding energy spectrum are exactly given and drawn up in light of

the deformation parameters, hence explains the confinement in law dimension.

In essence the presentation is structured as follows: Firstly, we present a review on the

R-deformed Heisenberg algebra for the fractional-dimensional used in the calculations. Sec-

ondly, we expose the exact solution of The Klein Gordon equation with mixed scalar and

vector linear in the fractional-dimensional space.

Keywords: Fractional-dimensional space, Bessel differential operator, R-deformed Heisen-

berg algebras, special functions.
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Abstract: Neural networks are a product of Artificial Intelligence, which have a variety

of applications in several fields such as biology, economy, finance, and many engineering

fields. As an extension of the well-known Hopfield neural networks, Kosko in 1987 intro-

duced a new class of recurrent networks called bidirectional associative memory (BAM)

neural networks. Their design encompasses two interconnected hidden neuronal layers in

which neurons in a single layer do not connect. These networks are widely applied in

various areas such as pattern recognition, signal and image processing, automatic control,

associative memory, and so forth. In hardware implementation, delays appear due to the

finite switching speed of the amplifiers as the neurons communicate together. These may

cause oscillations, divergences, and instabilities, which are detrimental effects on systems.

Neural networks commonly have a spatial span due to the multiplicity of parallel paths

with different size and length axons, and thus a propagation delay distribution occurs along

a time interval. The retarded BAM neural network model we are interested in is described
by the following differential equations:





x′i(t) = −ci(xi(t)) +
m∑

j=1

[
ajif1j(yj(t)) + dji

∞∫
0

kji(s)f2j(yj(t− s))ds
]

+ Ii, i = 1, 2, ..., n,

y′j(t) = −rj(yj(t)) +
n∑

i=1

[
āijg1i(xi(t)) + d̄ij

∞∫
0

hij(s)g2i(xi(t− s))ds
]

+ Jj, j = 1, 2, ..., m,

xi(t) = φi(t), t ≤ 0,
yj(t) = ϕj(t), t ≤ 0.

(65)

To design such networks, it is crucial to study the qualitative behavior of their solutions,

which practically means that small changes in input signals, initial data or system parame-

ters do not result in significant changes in the state of the system. Besides, unstable neural
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networks have no sense in practice. Moreover, the activation functions, which connect the

inputs to the outputs of the networks, represent a basic element of artificial neural net-

works. In general, these function of hidden neurons present a degree of non-linearity which

is important in the majority of applications for artificial neural networks. Initially, they

were supposed bounded, smooth and monotonic functions [3]. Later, there was a slight

relaxation of these conditions to be of Lipschitz type, which has been widely considered in

the literature [1]. Due to the significance of non-Lipschitz activation functions in imple-

mentations, relaxing the Lipschitz condition is required. Through a more relaxed condition

on such functions, in this talk, we derive sufficient conditions to ensure the exponential

stability using a nonlinear Halanay inequality as well as some analytical techniques. The

effectiveness of the theoretical results is validated by a numerical example.

Keywords: Exponential stability, BAM neural network, distributed delay, nonlinear

Halanay inequality.
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Abstract: In this talk, we present some upper and lower bounds of numerical radius for

a bounded linear operator matrices defined on a complex Hilbert space H. We also apply

this results to estimate the numerical radius of Frobenius Companion matrices for monic

polynomial of degree n ≥ 2 with complex coefficients.

In the present talk, we consider the numerical radius which defined as

w(A) = sup
‖x‖=1

|〈Ax, x〉|,

where A is a bounded linear operator on a complex Hilbert space H (i.e A ∈ B(H)) with

inner product 〈·, ·〉. The following inequality

1

2
‖A‖ ≤ w(A) ≤ ‖A‖, for every A ∈ B(H),

give to as the equivalent between the numerical radius and the usual operator norm ‖ · ‖.
Different researchers was provided the both side of this inequality (Lower and upper).

We have p(z) = zn + an−1z
n−1 + · · · + a1 + a0 be a monic polynomial of degree n ≥ 2

with complex coefficent a0, a1, . . . , an−1. Then the Frobenius companion matrix of p is the

matrix

C(p) =




−an −an−1 . . . −a2 −a1

1 0 . . . . . . 0

0 1
. . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0




.

It is well Known that the eigenvalue of C(p) are exactly the zeros of the polynomial p(z).

Since z is any zero of the polynomial p(z), it follows that

|z| ≤ w(C(p)) as σ(C(p)) ⊆ W (C(p)). (66)
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The refinement result was used to estimate the lower bound of |λ|, which λ is eigenvalue,

of Frobenius Companion matrix.

Keywords: Crawford number; Numerical radius; normal operator; operator norm;

spectral radius.
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